@phdthesis{Ciba2021, author = {Ciba, Manuel}, title = {Synchrony Measurement and Connectivity Estimation of Parallel Spike Trains from in vitro Neuronal Networks}, doi = {10.25972/OPUS-22364}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The goal of this doctoral thesis is to identify appropriate methods for the estimation of connectivity and for measuring synchrony between spike trains from in vitro neuronal networks. Special focus is set on the parameter optimization, the suitability for massively parallel spike trains, and the consideration of the characteristics of real recordings. Two new methods were developed in the course of the optimization which outperformed other methods from the literature. The first method "Total spiking probability edges" (TSPE) estimates the effective connectivity of two spike trains, based on the cross-correlation and a subsequent analysis of the cross-correlogram. In addition to the estimation of the synaptic weight, a distinction between excitatory and inhibitory connections is possible. Compared to other methods, simulated neuronal networks could be estimated with higher accuracy, while being suitable for the analysis of massively parallel spike trains. The second method "Spike-contrast" measures the synchrony of parallel spike trains with the advantage of automatically optimizing its time scale to the data. In contrast to other methods, which also adapt to the characteristics of the data, Spike-contrast is more robust to erroneous spike trains and significantly faster for large amounts of parallel spike trains. Moreover, a synchrony curve as a function of the time scale is generated by Spike-contrast. This optimization curve is a novel feature for the analysis of parallel spike trains.}, subject = {Synchronit{\"a}tsmessung}, language = {en} } @article{BassetCizekCuenoudetal.2015, author = {Basset, Yves and Cizek, Lukas and Cu{\´e}noud, Philippe and Didham, Raphael K. and Novotny, Vojtech and {\O}degaard, Frode and Roslin, Tomas and Tishechkin, Alexey K. and Schmidl, J{\"u}rgen and Winchester, Neville N. and Roubik, David W. and Aberlenc, Henri-Pierre and Bail, Johannes and Barrios, Hector and Bridle, Jonathan R. and Casta{\~n}o-Meneses, Gabriela and Corbara, Bruno and Curletti, Gianfranco and da Rocha, Wesley Duarte and De Bakker, Domir and Delabie, Jacques H. C. and Dejean, Alain and Fagan, Laura L. and Floren, Andreas and Kitching, Roger L. and Medianero, Enrique and de Oliveira, Evandro Gama and Orivel, Jerome and Pollet, Marc and Rapp, Mathieu and Ribeiro, Servio P. and Roisin, Yves and Schmidt, Jesper B. and S{\o}rensen, Line and Lewinsohn, Thomas M. and Leponce, Maurice}, title = {Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0144110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136393}, pages = {e0144110}, year = {2015}, abstract = {Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.}, language = {en} }