@phdthesis{NoellieAhouRUETH2010, author = {Noellie Ahou RUETH, geb. YAO}, title = {Mapping Bushfire Distribution and Burn Severity in West Africa Using Remote Sensing Observations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Fire has long been considered to be the main ecological factor explaining the origin and maintenance of West African savannas. It has a very high occurrence in these savannas due to high human pressure caused by strong demographic growth and, concomitantly, is used to transform natural savannas into farmland and is also used as a provider of energy. This study was carried out with the support of the BIOTA project funded by the German ministry for Research and Education. The objective of this study is to establish the spatial and temporal distribution of bushfires during a long observation period from 2000 to 2009 as well as to assess fire impact on vegetation through mapping of the burn severity; based on remote sensing and field data collections. Remote sensing was used for this study because of the advantages that it offers in collecting data for long time periods and on different scales. In this case, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument at 1km resolution is used to assess active fires, and understand the seasonality of fire, its occurrence and its frequency within the vegetation types on a regional scale. Landsat ETM+ imagery at 30 m and field data collections were used to define the characteristics of burn severity related to the biomass loss on a local scale. At a regional scale, the occurrence of fires and rainfall per month correlated very well (R2 = 0.951, r = -0.878, P < 0.01), which shows that the lower the amount of rainfall, the higher the fire occurrence and vice versa. In the dry season, four fire seasons were determined on a regional scale, namely very early fires, which announce the beginning of the fires, early and late fires making up the peak of fire in December/January and very late fires showing the end of the fire season and the beginning of the rainy season. Considerable fire activity was shown to take place in the vegetation zones between the Forest and the Sahel areas. Within these zones, parts of the Sudano-Guinean and the Guinean zones showed a high pixel frequency, i.e. fires occurred in the same place in many years. This high pixel frequency was also found in most protected areas in these zones. As to the kinds of land cover affected by fire, the highest fire occurrence is observed within the Deciduous woodlands and Deciduous shrublands. Concerning the burn severity, which was observed at a local scale, field data correlated closely with the ΔNBR derived from Landsat scenes of Pendjari National Park (R2 = 0.76). The correlation coefficient according to Pearson is r = 0.84 and according to Spearman-Rho, the correlation coefficient is r = 0.86. Very low and low burn severity (with ΔNBR value from 0 to 0.40) affected the vegetation weakly (0-35 percent of biomass loss) whereas moderate and high burn severity greatly affected the vegetation, leading to up to 100 percent of biomass loss, with the ΔNBR value ranging from 0.41 to 0.99. It can be seen from these results that remotely sensed images offer a tool to determine the fire distribution over large regions in savannas and that the Normalised Burn Ratio index can be applied to West Africa savannas. The outcomes of this thesis will hopefully contribute to understanding and, eventually, improving fire regimes in West Africa and their response to climate change and changes in vegetation diversity.}, subject = {Westafrika}, language = {en} } @article{Haveman2023, author = {Haveman, Rense}, title = {Phytosociological notes on hedges in South Ayrshire, Scotland}, series = {Forum Geobotanicum}, volume = {11}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2023.0420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312634}, pages = {1-7}, year = {2023}, abstract = {On the basis of four relev{\´e}es of hedges around Straiton en Dailly in South Ayrshire, Scotland, some features of hedges are discussed. On the basis of the brambles, the vegetation of these hedges can be assigned to the Pruno-Rubion sprengelii, which comprises the bramble scrubs of circumneutral and nutrient rich soils in West Europe (Haveman et al. 2017, Haveman \& de Ronde 2019). Until now, this alliance was thought to be restricted to the northwestern edge of the European continent, but based on these relev{\´e}es and the known distribution area of Rubus nemoralis and Rubus polyanthemus, both characteristic for the Pruno-Rubion sprengelii, large parts of North England and Scotland have to be included in the distribution area of the alliance. The Pruno-Rubion sprengelii is optimally developed in rather narrow structures, like hedges, which are pruned every year. Here, brambles and herbs alike can grow with and under the shrubs, facilitated by the light that reaches large parts of the ground. Where the economic base of hedges perishes, they are not longer maintained, and the shrubs can grow out to their natural proportions. This changes the amount of light reaching the surface in the inner parts of the thicket, changing the competition between the species. The brambles as well as the herbs are displaced to the outer edges of the scrub, and the vegetation "dissociates" in a high-growing scrub, a fore-mantle ("cuff") with brambles, and a fringe with perennial herbs. These elements can hardly ever be assigned to the Pruno-Rubion anymore. The Pruno-Rubion sprengelii in optima forma is a scrub in which the three elements (shrubs, brambles, and herbs) grow closely intertwined. This is rarely found in natural landscapes, and thus the alliance is a typical element of the old farmer landscape. What is more: the typical species of the alliance, like Rubus nemoralis and R. polyanthemus, could only evolve after the landscape was opened by farmers in the last six millennia (Matzke-Hajek 1997), giving way to Rubus ulmifolius to expand its distribution area. This caused an explosion of hybrids which stabilised through apomixis into the wealth of Rubus species inhibiting the West European landscape nowadays (Sochor et al. 2015). Many of these species have their original home in a man-made landscape. Therefore, the Pruno-Rubion sprengelii can be characterised as a "farmers alliance" pur sang.}, subject = {Brombeere}, language = {en} }