@article{MilanosElsharifJanzenetal.2017, author = {Milanos, Sinem and Elsharif, Shaimaa A. and Janzen, Dieter and Buettner, Andrea and Villmann, Carmen}, title = {Metabolic Products of Linalool and Modulation of GABA\(_{A}\) Receptors}, series = {Frontiers in Chemistry}, volume = {5}, journal = {Frontiers in Chemistry}, number = {46}, doi = {10.3389/fchem.2017.00046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170779}, year = {2017}, abstract = {Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABA\(_{A}\) receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1β2γ2 GABA\(_{A}\) receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC\(_{10-30}\) together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.}, language = {en} } @article{AtakLanglhoferSchaeferetal.2015, author = {Atak, Sinem and Langlhofer, Georg and Schaefer, Natascha and Kessler, Denise and Meiselbach, Heike and Delto, Carolyn and Schindelin, Hermann and Villmann, Carmen}, title = {Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia}, series = {Frontiers in Molecular Neuroscience}, volume = {8}, journal = {Frontiers in Molecular Neuroscience}, number = {79}, doi = {10.3389/fnmol.2015.00079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144818}, year = {2015}, abstract = {Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GIyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GIyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GIyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, 1162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.}, language = {en} }