@article{LaglerElMeseryKuebleretal.2017, author = {Lagler, Charlotte and El-Mesery, Mohamed and K{\"u}bler, Alexander Christian and M{\"u}ller-Richter, Urs Dietmar Achim and St{\"u}hmer, Thorsten and Nickel, Joachim and M{\"u}ller, Thomas Dieter and Wajant, Harald and Seher, Axel}, title = {The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158993}, pages = {e0185720}, year = {2017}, abstract = {Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48-72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2.}, language = {en} } @article{HoeggerKurlbaumMuelek2013, author = {H{\"o}gger, Petra and Kurlbaum, Max and M{\"u}lek, Melanie}, title = {Facilitated Uptake of a Bioactive Metabolite of Maritime Pine Bark Extract (Pycnogenol) into Human Erythrocytes}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0063197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96656}, year = {2013}, abstract = {Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.}, language = {en} }