@phdthesis{Fetting2011, author = {Fetting, Doreen [verh: Korb]}, title = {Novel Cav1.2 and PMCA4b interacting PDZ domain containing proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The voltage -gated calcium channel, Cav1.2, and the plasma membrane calcium ATPase, PMCA4b, play important roles in excitable and non-excitable cells. The central function of Cav1.2 is to regulate the calcium entry into cells upon depolarization, while PMCA4b is responsible for calcium extrusion and has an influence on cellular calcium homeostasis. Both proteins control fundamental functions in the heart and brain, but the specific functions and the precise mechanisms are still investigated. In order to identify new interaction partners that may regulate the activities of the Cav1.2 and the PMCA4b, we used three independent assays and co-localization studies. The assays, which were used are PDZ domain arrays (testing 124 different PDZ domains), GST pull-downs, and conventional immunoprecipitation assays. In the PDZ arrays, strongest interactions with Cav1.2 and PMCA4b were found for the PDZ domains of MAST-205, MAGI-1, MAGI-2, MAGI-3, and ZO-1. Additionally, we established interactions between Cav1.2 and the PDZ domains of NHERF1/2, Mint-2, and CASK. PMCA4b was observed to interact with Mint-2, and its interactions with Chapsyn-110 and CASK were confirmed. Furthermore, we validated interaction of Cav1.2 and PMCA4b with NHERF1, CASK, MAST-205 and MAGI-3 via immunoprecipitation. We also demonstrated direct interaction of the C-terminus of Cav1.2 and the PDZ domain of nNOS. We assumed that nNOS overexpression would reduce Ca2+ influx through Cav1.2. To address this question, we measured Ca2+ currents in stably transfected HEK 293 cells expressing the Cav1.2 (α1b and β2a subunit of the smooth muscle L-type calcium channel) and nNOS. It has been shown that NO modulates ion channel activity by nitrosylation of sulfhydryl groups on the channel protein. So we propose that the interaction between the C-terminus of Cav1.2 and the PDZ domain of nNOS inhibits the currents by an S-nitrosylation of the channel protein. All these interactions connect both proteins to signaling networks involved in signal transmission, cell adhesion, and apoptosis, which may help provide new hints about the physiological functions of Cav1.2 and PMCA4b in intra- and intercellular signaling.}, subject = {Calciumkanal}, language = {en} } @misc{Wenzel2011, type = {Master Thesis}, author = {Wenzel, Frank}, title = {Smell and repel: Resin based defense mechanisms and interactions between Australian ants and stingless bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bees are subject to permanent threat from predators such as ants. Their nests with large quantities of brood, pollen and honey represent lucrative targets for attacks whereas foragers have to face rivalry at food sources. This thesis focused on the role of stingless bees as third party interactor on ant-aphid-associations as well as on the predatory potential represented by ants and defense mechanisms against this threat. Regular observations of an aphid infested Podocarpus for approaching stingless bees yielded no results. Another aim of this thesis was the observation of foraging habits of four native and one introduced ant species for assessment of their predatory potential to stingless bees. All species turned out to be dietary balanced generalists with one mostly carnivorous species and four species predominantly collecting nectar roughly according to optimal foraging theory. Two of the species monitored, Rhytidoponera metallica and Iridomyrmex rufoniger were considered potential nest robbers. As the name implies, stingless bees lack the powerful weapon of their distant relatives; hence they specialized on other defense strategies. Resin is an important, multipurpose resource for stingless bees that is used as material for nest construction, antibiotic and for defensive means. For the latter purpose highly viscous resin is either directly used to stick down aggressors or its terpenic compounds are included in the bees cuticular surface. In a feeding choice experiment, three ant species were confronted with the choice between two native bee species - Tetragonula carbonaria and Austroplebeia australis - with different cuticular profiles and resin collection habits. Two of the ant species, especially the introduced Tetramorium bicarinatum did not show any preferences. The carnivorous R. metallica predominantly took the less resinous A. australis as prey. The reluctance towards T. carbonaria disappeared when the resinous compounds on its cuticle had been washed off with hexane. To test whether the repulsive reactions were related to the stickiness of the resinous surface or to chemical substances, hexane extracts of bees' cuticles, propolis and three natural tree resins were prepared. In the following assay responses of ants towards extract treated surfaces were observed. Except for one of the resin extracts, all tested substances had repellent effects to the ants. Efficacy varied with the type of extract and species. Especially to the introduced T. bicarinatum the cuticular extract had no effect. GCMS-analyses showed that some of the resinous compounds were also found in the cuticular profile of T. carbonaria which featured reasonable analogies to the resin of Corymbia torelliana that is highly attractive for stingless bees. The results showed that repellent effects were only partially related to the sticky quality of resin but were rather caused by chemical substances, presumably sesqui- and diterpenes. Despite its efficacy this defense strategy only provides short time repellent effects sufficient for escape and warning of nest mates to initiate further preventive measures.}, subject = {Stachellose Biene}, language = {en} }