@article{TshitengeFeineisMudogoetal.2017, author = {Tshitenge, Dieudonn{\´e} Tshitenge and Feineis, Doris and Mudogo, Virima and Kaiser, Marcel and Brun, Reto and Bringmann, Gerhard}, title = {Antiplasmodial Ealapasamines A-C,'Mixed' Naphthylisoquinoline Dimers from the Central African Liana Ancistrocladus ealaensis}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {5767}, doi = {10.1038/s41598-017-05719-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170645}, year = {2017}, abstract = {Three unusual heterodimeric naphthylisoquinoline alkaloids, named ealapasamines A-C (1-3), were isolated from the leaves of the tropical plant Ancistrocladus ealaensis J. L{\´e}onard. These 'mixed', constitutionally unsymmetric dimers are the first stereochemically fully assigned cross-coupling products of a 5,8′- and a 7,8′-coupled naphthylisoquinoline linked via C-6′ in both naphthalene portions. So far, only two other West and Central Ancistrocladus species were known to produce dimers with a central 6,6″-axis, yet, in contrast to the ealapasamines, usually consisting of two 5,8′-coupled monomers, like e.g., in michellamine B. The new dimers 1-3 contain six elements of chirality, four stereogenic centers and the two outer axes, while the central biaryl axis is configurationally unstable. The elucidation of the complete stereostructures of the ealapasamines was achieved by the interplay of spectroscopic methods including HRESIMS, 1D and 2D NMR (in particular ROESY measurements), in combination with chemical (oxidative degradation) and chiroptical (electronic circular dichroism) investigations. The ealapasamines A-C display high antiplasmodial activities with excellent half-maximum inhibition concentration values in the low nanomolar range.}, language = {en} } @phdthesis{Toksabay2022, author = {Toksabay, Sinem}, title = {Synthesis and on surface self assembly properties of pi extended tribenzotriquinacenes}, doi = {10.25972/OPUS-24573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Tribenzotriquinacene (TBTQ) is a polycyclic aromatic framework with a particularly rigid, C3v symmetrical, bowl-shaped core bearing three mutually fused indane wings. It has been discussed as a defect center for a nanographene by Kuck and colleagues. Therefore, extended TBTQ structures are promising models for saturated defect structures in graphene and graphene like molecules and could be used to investigate the role of defects for the electronic properties of graphene. With this motivation, three different pi-extended TBTQ derivatives have been synthesized in this work. Several different Scholl reaction conditions were tried to obtain fully annulated product of hexaphenyl substituted TBTQ. The desired benzannulated TBTQ derivative could not be obtained due to unfavourable electron density in the respective positions of the molecule and increased reactivity of the bay position of the precursor. As an another method for benzannulation is the on-surface synthesis of graphene flakes and can be carried out using electron beams e.g. in a tunneling microscope (STM). According to our previous research, the parent system TBTQ and centro-methyl TBTQ on silver and gold surfaces showed that the gas phase deposition of these molecules gives rise to the formation of highly ordered two-dimensional assemblies with unique structural features. This shows the feasibility for the formation of defective graphene networks starting from the parent structures. Therefore, the same deposition technique was used to deposit Me-TBTQ(OAc)3Ph6, and investigate the molecular self-assembly properties directly on the surface of Cu (111). In summary, the substrate temperature dependent self-assembly of Me-TBTQ(OAc)3Ph6 molecules on Cu(111), shows the following evolution of orientations. At room temperature, molecules form dimers, which construct a higher-coverage honeycomb lattice. Furthermore, one of the acetyl group located in the bay positions of the TBTQ core is cleaved and the remaining two induce the metal-molecule interaction. It was presumed that by increasing the temperature to 393 K, the remaining acetyl and methyl groups would beeliminated from the molecular structure.In addition, the smaller TBTQ-Ph6 molecules preferably lie flat on Cu(111) crystal and allowing the molecules to settle into a C3-symmetry and form a dense hexagonal structure.}, subject = {Triquinacenderivate}, language = {en} } @phdthesis{SanchezNaya2023, author = {S{\´a}nchez Naya, Roberto}, title = {Synthesis and Characterization of Dye-Containing Covalent Organic Frameworks}, doi = {10.25972/OPUS-28899}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288996}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present thesis adress the synthesis and characterization of novel COFs that contain dye molecules as integral components of the organic backbone. These chromophore-containing frameworks open new research lines in the field and call for the exploration of applications such as catalysis, sensing, or in optoelectronic devices. Initially, the fabrication of organic-inorganic composites by the growth of DPP TAPP COF around functionalized iron oxide nanoparticles is reported. By varying the ratio between inorganic nanoparticles and organic COFs, optoelectronic properties of the materials are adjusted. The document also reports the synthesis of a novel boron dipyrromethene-containing (BODIPY) COF. Synthesis, full characterization and the scope of potential applications with a focus on environmental remediation are discussed in detail. Last, a novel diketopyrrolopyrrole-containing (DPP) DPP-Py-COF based on the combination of DDP and pyrene building blocks is presented. The very low bandgap of these materials and initial investigations on the photosensitizing properties are discussed.}, subject = {Organische Chemie}, language = {en} } @article{SyamalaWuerthner2020, author = {Syamala, Pradeep P. N. and W{\"u}rthner, Frank}, title = {Modulation of the Self-Assembly of π-Amphiphiles in Water from Enthalpy- to Entropy-Driven by Enwrapping Substituents}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {38}, doi = {10.1002/chem.202000995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218107}, pages = {8426 -- 8434}, year = {2020}, abstract = {Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π-cores of amphiphilic naphthalene and perylene bisimide dyes, self-assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π-cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π-cores are strongly sequestered by the OEG chains. These molecules self-assemble at elevated temperatures in an entropy-driven process according to temperature- and concentration-dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self-assembly originates upon cooling in an enthalpy-driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of "high energy water" from the hydrophobic π-surfaces as well as dispersion interactions between the π-scaffolds which drive the self-assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen-bonded water molecules from OEG units it is in particular the increase in conformational entropy of back-folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self-assembly of amphiphilic dyes in water from enthalpy- to entropy-driven.}, language = {en} } @phdthesis{Swain2024, author = {Swain, Asim}, title = {Helically Twisted Graphene Nanoribbons: Bottom-up Stereospecific Synthesis and Characterization}, doi = {10.25972/OPUS-36016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Over the past decade, substantial progress has been made in synthesizing atomically precise carbon nanostructures, with a focus on graphene nanoribbons (NRs) through advanced synthetic techniques. Despite these advancements, precise control over the stereochemistry of twisted NRs remains challenging. This thesis introduces a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR, utilizing enantiopure [n]helicenes as a molecular wrench to intricately dictate the overall conformation of the NR. Enantiopure [7]helicenes were stitched to the terminal K-regions of a conjugated pyrene NR using a stereospecific and site-selective palladium(II)-catalyzed annulative π-extension (APEX) reaction, resulting in a helically twisted NR with an end-to-end twist of 171°, the second-largest twist reported so far in the literature for twistacenes. The helical end-to-end twist increases with each addition of benzene ring to the central acene core, suggesting that the extra strain induced by the terminal [7]helicenes maintains such a high level of twist. The quantum chemical calculations were conducted to investigate the impact of twisting on the conformational population. At room temperature, the central backbone of the nanoribbon adopts the twisted helicity opposite to that of the attached [7]helicene, constituting around 99\% of the molecular population. For instance, (P)-[7]helicenes produce a left-handed helical nanoribbon, while (M)-[7]helicenes produce a right-handed helical nanoribbon. In the presence of helicenes of opposite chirality, the nanoribbon adopts a waggling conformation. The helically twisted nanoribbons are conformationally robust, as variable temperature chiroptical measurements showed no change in CD and CPL spectra. The proposed strategy, involving the late-stage addition of [n]helicene units through the APEX reaction, appears promising for streamlining the synthesis of diverse cove edge NR variants with desired conformations. In addition to single-handed helically twisted nanoribbons, the symmetry-based functional properties of C2 and C1 symmetric pyrene-fused single and double [n]helicene compounds were studied. Owing to its higher structural rigidity, the C1 symmetric heptagonal ring-containing molecules exhibited exceptional configurational stability along with remarkable chiroptical properties compared to their C2 symmetric as well as pristine helicene congeners.}, subject = {Helicene}, language = {en} } @article{SuterPlessErnzerhofetal.1994, author = {Suter, H. U. and Pleß, V. and Ernzerhof, M. and Engels, Bernd}, title = {Difficulties in the Calculation of Electron Spin Resonance Parameters using Density Functional Methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59113}, year = {1994}, abstract = {Density functional theory is applied to the calculation ofthe isotropic byperfine coupJing constants in some small molecules. Various functionals are tested. The agreement of the calculated values to experimental data and values obtained from sophisticated ab initio methods depends on the functionals used and the system under consideration. With respect to spin density calculations the functional of Lee, Yang and Parr with Becke's excbange functional (BLYP) is found to give good results for tbe heavier center of the CH and the NH molecule, while the spin densities of other molecules such as OH, H\(_2\)CN, H\(_2\)CO\(^+\), NO and O\(_2\) deviate considerably from experimental and/or other theoretical results (30\%-60\%). In cases where the singly occupied orbital can contribute to the isotropic hyperfine coupling constants, accurate results are obtained. The reason fortbis is analyzed.}, subject = {Organische Chemie}, language = {en} } @article{SuterHuangEngels1994, author = {Suter, H. U. and Huang, M.-B. and Engels, Bernd}, title = {A Multireference Configuration Interaction Study of the Hyperfine Structure of the Molecules CCO, CNN and NCN in their triplet ground states}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59108}, year = {1994}, abstract = {The hyperfine structures of the isoelectronic molecules CCO. CNN, and NCN in their triplet ground states (X\(^3 \sum ^-\)) are investigated by means of ab initio methods. The infrared frequencies and geometries are detennined and compared with experiment. Configuration selected multireference configuration interaction calculations in combination with perturbation theory to correct the wave function (MRD-CI/B\(_K\)) employing extended atomic orbital (AO) basis sets yielded very accurate hyperfine properties. The theoretical values for CCO are in excellent agreement with the experimental values determined by Smith and Weltner [J. Chem. Phys. 62,4592 (1975)]. For CNN, the first assignment of Smith and Weltner for the two nitrogen atoms has to be changed. A qualitative discussion of the electronic structure discloses no simple relation between the structure of the singly occupied orbitals and the measured hyperfine coupling constants. Vibrational effects were found to be of little importance.}, subject = {Organische Chemie}, language = {en} } @article{SuterEngels1994, author = {Suter, H. U. and Engels, Bernd}, title = {Theoretical investigation of ESR parameters: H\(_2\)CN and H\(_2\)CO\(^+\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59029}, year = {1994}, abstract = {The hyperfine structure of the two isoelectronic molecules H\(_2\)CN and H\(_2\)CO\(^+\) in their electronic ground state (X\(^2\)B\(_2\)) is studied. The influence of the atomic orbital (AO), basis sets, of the correlation treatment, and of the. equilibrium geometry on the obtained hyperfine propertles 1s - investigated. It is found that the multireference double excitation-configuration interaction (MRD-CI)/ BK treatment in which an MRD-CI wave function is corrected by a modified B\(_K\) method yields equivalent results to quadratic CI [QCISD(T)], coupled cluster single doubles [CCSD(T)), or Brueckner doubled [BD(T)]. Uncertainties in the equilibrium geometries are found to be the major source for discrepancies between theoretically and experimentally determined isotropic hyperfine coupling constants (hfccs). For the heavier centers, the calculated values of the isotropic hfccs agrees nearly perfectly with experimental values (\(\approx\) 1\%-2\%). The calculated values for the hydrogens are too low, but using the equilibrium structure suggested by Yamamoto and Sato [J. Chem. Phys. 96, 4157 ( 1992)], the best estimate deviates by less than 3\%.}, subject = {Organische Chemie}, language = {en} } @article{SungKimFimmeletal.2015, author = {Sung, Jooyoung and Kim, Pyosang and Fimmel, Benjamin and W{\"u}rthner, Frank and Kim, Dongho}, title = {Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8646}, doi = {10.1038/ncomms9646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148157}, year = {2015}, abstract = {Ever since the discovery of dye self-assemblies in nature, there have been tremendous efforts to exploit biomimetic supramolecular assemblies for tailored artificial photon processing materials. This feature necessarily has resulted in an increasing demand for understanding exciton dynamics in the dye self-assemblies. In a sharp contrast with pi-type aggregates, however, the detailed observation of exciton dynamics in H-type aggregates has remained challenging. In this study, as we succeed in measuring transient fluorescence from Frenkel state of π-stacked perylene tetracarboxylic acid bisimide dimer and oligomer aggregates, we present an experimental demonstration on Frenkel exciton dynamics of archetypal columnar π-π stacks of dyes. The analysis of the vibronic peak ratio of the transient fluorescence spectra reveals that unlike the simple π-stacked dimer, the photoexcitation energy in the columnar π-stacked oligomer aggregates is initially delocalized over at least three molecular units and moves coherently along the chain in tens of femtoseconds, preceding excimer formation process.}, language = {en} } @article{SunAnhaltSarosietal.2022, author = {Sun, Meng-Jia and Anhalt, Olga and S{\´a}rosi, Menyh{\´a}rt B. and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {51}, doi = {10.1002/adma.202207331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312248}, year = {2022}, abstract = {Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)\(_{2}\)) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (Φ\(_{PL}\)) exceeding 25\% and a phosphorescence lifetime (τ\(_{Ph}\)) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.}, language = {en} } @article{SulimanSunPedersenetal.2016, author = {Suliman, Salwa and Sun, Yang and Pedersen, Torbjorn O. and Xue, Ying and Nickel, Joachim and Waag, Thilo and Finne-Wistrand, Anna and Steinm{\"u}ller-Nethl, Doris and Krueger, Anke and Costea, Daniela E. and Mustafa, Kamal}, title = {In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2}, series = {Advanced Healthcare Materials}, volume = {5}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.201500723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189764}, pages = {730-742}, year = {2016}, abstract = {The aim is to evaluate the effect of modifying poly[(L-lactide)-co-(epsilon-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1 alpha 2, and ANGPT1 are signifi cantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90\% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates infl ammation while lowering the dose of BMP-2 to a relatively safe and economical level.}, language = {en} } @article{SulimanMustafaKruegeretal.2016, author = {Suliman, Salwa and Mustafa, Kamal and Krueger, Anke and Steinm{\"u}ller-Nethl, Doris and Finne-Wistrand, Anna and Osdal, Tereza and Hamza, Amani O. and Sun, Yang and Parajuli, Himalaya and Waag, Thilo and Nickel, Joachim and Johannessen, Anne Christine and McCormack, Emmet and Costea, Daniela Elena}, title = {Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes}, series = {Biomaterials}, volume = {95}, journal = {Biomaterials}, doi = {10.1016/j.biomaterials.2016.04.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188287}, pages = {11-21}, year = {2016}, abstract = {This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.}, language = {en} } @phdthesis{Sturm2006, author = {Sturm, Christian}, title = {Theoretical Investigation of the Geometrical Arrangements of alpha-alanyl-peptide Nucleic Acid Hexamer Dimers and the Underlying Interstrand Binding Motifs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20363}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die Funktionalit{\"a}ten der DNA oder RNA werden haupts{\"a}chlich durch die verschiedenen Wechselwirkungen der paarenden Nucleinbasen bestimmt. Um die komplexen Zusammenh{\"a}nge dieser verschiedenen Wechselwirkungen zu verstehen, werden Modellsysteme ben{\"o}tigt, die weniger Restriktionen durch das R{\"u}ckgrat besitzen. Ein Beispiel f{\"u}r solche Systeme sind Peptidnucleins{\"a}uren (PNA), in denen das Zuckerphosphatr{\"u}ckgrat der DNA oder RNA durch ein Peptidr{\"u}ckgrat ersetzt wird. Diederichsen et al. gelang es, eine große Anzahl solcher Systeme mit einen alpha-Alanyl-R{\"u}ckgrat zu synthetisieren, an das kanonische und nicht-kanonische Nucleins{\"a}uren gebunden sind. Diese Systeme aggregieren in verschiedenen Bindungsmotiven, die nicht in der DNA oder RNA auftauchen. Diese ungew{\"o}hnlichen Paarungsmotive k{\"o}nnten einen tiefen Einblick in das Zusammenspiel der Wechselwirkungen der Nucleinbasen geben, aber die geringen L{\"o}slichkeit der alpha-Alanyl-PNA Oligomere verhinderte eine experimentelle Charakterisierung der geometrischen Anordnung durch R{\"o}ntgenstruktur- oder NMR-Experimente. Lediglich die absolute Stabilit{\"a}t der verschiedenen Aggregate konnte durch Messungen der Schmelztemperatur mit Hilfe der UV-Spektroskopie bestimmt werden. Da die Kenntnis der geometrischen Strukturen sowie der ausgebildeten Bindungsmotive wichtig ist, um einen Einblick in das Zusammenspiel der einzelnen Wechselwirkungen zu erlangen, besteht das Ziel der vorliegenden Arbeit darin, solche Informationen mit der Hilfe von theoretischen Methoden zu erlangen. Zus{\"a}tzlich sind Effekte von Interesse, aus denen sich Trends bez{\"u}glich der Stabilit{\"a}t bestimmen lassen. Solche Untersuchungen sind einfacher zu realisieren als die Berechnung der absoluten Stabilit{\"a}ten, da viele Beitr{\"a}ge zur absoluten Energie f{\"u}r {\"a}hnliche Systeme (entropische und dynamische Effekte) in etwa gleich groß sind. Somit sind diese entropischen und dynamischen Effekte f{\"u}r das Ziel dieser Arbeit weniger wichtig. Zur Untersuchung der Bindungseigenschaften und der Stabilit{\"a}ten von alpha-Alanyl-PNA Oligomeren war es notwendig, bis dato nicht parametrisierte Nucleinbasen in den Parametersatz des Amber4.1 Kraftfelds zu integrieren. Die fehlenden Ladungen wurden durch Berechungen mit dem R.E.D-Programm-Paket ermittelt. Das Programm bestimmt aus dem elektrostatischen Potential einer optimierten Struktur die atomzentrierten Ladungen. Die fehlenden Bindungsparameter wurden der Literatur entnommen. Die Untersuchungen der einzelnen Dimere begannen jeweils mit der Konstruktion der alpha-Alanyl-PNAs f{\"u}r alle m{\"o}glichen Paarungsmodi. Es konnte gezeigt werden, dass bestimmte Paarungsmodi aufgrund der geometrischen Gegebenheiten der Dimere und des R{\"u}ckgrats nicht realisierbar waren. F{\"u}r andere Dimere war ein Aufbau der alpha-Alanyl-PNA-Dimere zwar m{\"o}glich, jedoch zerfielen die Dimere wieder w{\"a}hrend einer ersten Geometrieoptimierung aufgrund der hohen Spannung im R{\"u}ckgrat. Die stabilen Systeme wurden zun{\"a}chst in verschiedenen Molekulardynamik-(MD)-L{\"a}ufen simuliert. Informationen {\"u}ber die Geometrie bei T=0 K wurden durch Geometrieoptimierungen erhalten, die an verschieden Punkten der MD L{\"a}ufe gestartet wurden. Die resultierenden Geometrien aus den verschiedenen Anfangspunkten waren identisch. F{\"u}r die geometrieoptimierten Strukturen wurden f{\"u}r das T=0 K Modell die Wechselwirkungsenergien zwischen den Nucleinbasen und der Einfluss der R{\"u}ckgrats auf die Stabilit{\"a}t der Dimer in zwei separaten Schritten bestimmt. Im ersten Schritt wurde das R{\"u}ckgrat entfernt und die Schnittstellen mit Methylgruppen abges{\"a}ttigt. Die Wechselwirkungsenergie zwischen den Nucleinbasen wurde durch die Differenz der Energien des gesamten Systems und der Summe der Energien der einzelnen Nucleinbasen in der Geometrie des Dimers bestimmt. Aufgrund der durchgef{\"u}hrten Untersuchungen und die sich daraus ergebenen Korrelation der berechneten Stabilisierungsenergien mit der Schmelztemperatur konnte gezeigt werden, dass mit der vorgeschlagenen Methode eine verl{\"a}ssliche Beschreibung der PNA Systeme m{\"o}glich ist. F{\"u}r eine weitere Verbesserung des vorgestellten Modells bedarf es zus{\"a}tzliche R{\"o}ntgenstruktur- oder NMR-Experimente, die zur Strukturaufkl{\"a}rung der alpha-Alanyl-PNA Dimere entscheidend beitragen. Weitere detaillierte Daten {\"u}ber die Enthalpiebeitr{\"a}ge zur absoluten Energie der verschiedenen Komplexe w{\"a}ren sehr hilfreich, um die vorgestellte Methode zu best{\"a}tigen und zu verbessern. Diese Informationen k{\"o}nnten zum einen durch die Auswertung der Form der Schmelzkurve sowie durch Mikrokalorimetrie erhalten werden. F{\"u}r den Fall, dass die Vorhersagen durch die experimentellen Befunde best{\"a}tigt w{\"u}rden, k{\"o}nnte der Ansatz auf verwandte Systeme wie zum Beispiel beta-Alanyl-PNA, DNA oder RNA angewandt werden. Durch diese weiteren Informationen k{\"o}nnte unser Ansatz zus{\"a}tzlich durch die Ber{\"u}cksichtigung von dynamischen und/oder entropischen Effekte erweitert werden.}, subject = {Peptid-Nucleins{\"a}uren}, language = {en} } @article{StolteHechtXieetal.2020, author = {Stolte, Matthias and Hecht, Reinhard and Xie, Zengqi and Liu, Linlin and Kaufmann, Christina and Kudzus, Astrid and Schmidt, David and W{\"u}rthner, Frank}, title = {Crystal Engineering of 1D Exciton Systems Composed of Single- and Double-Stranded Perylene Bisimide J-Aggregates}, series = {Advanced Optical Materials}, volume = {8}, journal = {Advanced Optical Materials}, number = {18}, doi = {10.1002/adom.202000926}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218221}, year = {2020}, abstract = {Single crystals of three at bay area tetraphenoxy-substituted perylene bisimide dyes are grown by vacuum sublimation. X-ray analysis reveals the self-assembly of these highly twisted perylene bisimides (PBIs) in the solid state via imide-imide hydrogen bonding into hydrogen-bonded PBI chains. The crystallographic insights disclose that the conformation and sterical congestion imparted by the phenoxy substituents can be controlled by ortho-substituents. Accordingly, whilst sterically less demanding methyl and isopropyl substituents afford double-stranded PBI chains of complementary P and M atropo-enantiomers, single hydrogen-bonded chains of homochiral PBIs are observed for the sterically more demanding ortho-phenyl substituents. Investigation of the absorption and fluorescence properties of microcrystals and thin films of these PBIs allow for an unambiguous interpretation of these exciton systems. Thus, the J-aggregates of the double-stranded crystals exhibit a much larger (negative) exciton coupling than the single-stranded one, which in contrast has the higher solid-state fluorescence quantum yield.}, language = {en} } @phdthesis{Stiller2023, author = {Stiller, Carina}, title = {Synthesis and applications of modified nucleosides and RNA nucleotides}, doi = {10.25972/OPUS-31135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the 'central dogma of life'. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Stepanenko2008, author = {Stepanenko, Vladimir}, title = {Self-Assembly of Bay-Substituted Perylene Bisimide by Ligand-Metal Ion Coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32063}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The subject of this thesis is the synthesis and characterization of PBI-based fluorescent metallosupramolecular polymers and cyclic arrays. Terpyridine receptor functionalized PBIs of predesigned geometry have been used as building blocks to construct desired macromolecular structures through metal-ion-directed self-assembly. These metallosupramolecular architectures have been investigated by NMR, UV/Vis and fluorescence spectroscopy, mass spectrometry, and atomic force microscopy.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Stepanenko2008, author = {Stepanenko, Svetlana}, title = {Global Optimization Methods based on Tabu Search}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This work encompasses three parts. The first part provides a concise review of the most prominent metaheuristic concepts currently available and gives essential preliminaries together with definition of the combinatorial optimization problems. It substantiates the choice of the investigation direction and basis idea of the developed methods. In the second part the new nonlinear global optimization routines based on the TS strategy are described. The new approaches are the Gradient Tabu Search (GTS), the Gradient Only Tabu Search (GOTS), and the Tabu Search with Powell's Algorithm (TSPA). In the last part of the work the GOTS is applied for such chemical optimization problems. The chapter provides a systematic approach how the variables are chosen and the adjustable parameters are set. As test cases the global minimum energy conformation of some amino acids, of two angiotensin converting enzyme (ACE) inhibitors, of 2-acetoxy-N,N,N-trimethylethanaminium, and of a HIV-1 protease inhibitor is determined.}, subject = {Tabusuche}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @article{SteinmetzgerBaeuerleinHoebartner2020, author = {Steinmetzger, Christian and B{\"a}uerlein, Carmen and H{\"o}bartner, Claudia}, title = {Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201916707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203084}, pages = {6760-6764}, year = {2020}, abstract = {RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Here we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding site mapping and may also be applied for responsive aptamer devices.}, language = {en} } @article{SteinmetzgerBessiLenzetal.2019, author = {Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkz1084/5628921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192340}, pages = {gkz1084}, year = {2019}, abstract = {The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure - fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ~540 nm or ~590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA-chromophore complexes.}, language = {en} } @phdthesis{Steinmetzger2020, author = {Steinmetzger, Christian}, title = {Fluorogenic Aptamers and Fluorescent Nucleoside Analogs as Probes for RNA Structure and Function}, doi = {10.25972/OPUS-20760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {RNA plays a key role in numerous cellular processes beyond the central dogma of molecular biology. Observing and understanding this wealth of functions, discovering new ones and engineering them into purpose-built tools requires a sensitive means of observation. Over the past decade, fluorogenic aptamers have emerged to fill this niche. These short oligonucleotides are generated by in vitro selection to specifically interact with small organic fluorophores and can be utilized as genetically encoded tags for RNAs of interest. The most versatile class of fluorogenic aptamers is based on derivatives of hydroxybenzylidene imidazolone (HBI), a conditional fluorophore mimicking the chromophore structure found in green and red fluorescent proteins. The respective aptamers are well-known by the "vegetable" nomenclature, including Spinach, Broccoli and Corn, and have found numerous applications for studying RNA function in vitro and in cells. Their success, however, is somewhat overshadowed by individual shortcomings such as a propensity for misfolding, dependence on unphysiologically high concentrations of magnesium ions or, in the case of Corn, dimerization that might affect the function of the tagged RNA. Moreover, most fluorogenic aptamers exhibit limited ligand promiscuity by design, thereby restricting their potential for spectral tuning to a narrow window of wavelengths. This thesis details the characterization of a new fluorogenic aptamer system nicknamed Chili. Chili is derived from an aptamer that was originally selected to bind 4-hydroxy-3,5-dimethoxy¬hydroxy-benzylidene imidazolone (DMHBI), resulting in a green fluorescent complex. Unlike other aptamers of its kind, Chili engages in a proton transfer cycle with the bound ligand, resulting in a remarkably large Stokes shift of more than 130 nm. By means of an empirical ligand optimization approach, several new DMHBI derivatives were found that bind to Chili with high affinity, furnishing complexes up to 7.5 times brighter compared to the parent ligand. In addition, Chili binds to π-extended DMHBI derivatives that confer fluorescence in the yellow-red region of the visible spectrum. The highest affinity and degree of fluorescence turn-on for both green and red fluorogenic ligands were achieved by the incorporation of a unique, positively charged substituent into the HBI scaffold. Supplemented by NMR spectroscopy, kinetic and thermodynamic studies showed that the binding site of Chili is loosely preorganized in the absence of ligand and likely forms a G-quadruplex upon ligand binding. To showcase future applications, Chili was incorporated into a FRET sensor for monitoring the cleavage of an RNA substrate by a 10-23 DNAzyme. Besides aptamers as macromolecular fluorescent complexes, fluorescent nucleobase analogs are powerful small isomorphic components of RNA suitable for studying structure and folding. Here, the highly emissive nucleobase analog 4-cyanoindole (4CI) was developed into a ribonucleoside (r4CI) for this purpose. A new phosphoramidite building block was synthesized to enable site-specific incorporation of 4CI into RNA. Thermal denaturation experiments confirmed that 4CI behaves as a universal nucleobase, i.e. without bias towards any particular hybridization partner. Photophysical characterization established r4CI as a generally useful fluorescent ribonucleoside analog. In this work, it was employed to gain further insight into the structure of the Chili aptamer. Using several 4CI-modified Chili-HBI complexes, a novel base-ligand FRET assay was established to obtain a set of combined distance and orientation restraints for the tertiary structure of the aptamer. In addition to their utility for interrogating structure and binding, supramolecular FRET pairs comprising a fluorescent nucleobase analog donor and an innately fluorogenic acceptor hold great promise for the construction of color-switchable RNA aptamer sensor devices.}, subject = {Aptamer}, language = {en} } @phdthesis{Steeger2015, author = {Steeger, Markus}, title = {Energy and Charge Transfer in Donor-Acceptor Substituted Hexaarylbenzenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112520}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The focus of this work was the investigation of energy transfer between charge transfer states. For this purpose the multidimensional chromophores HAB-S, HAB-A, B1 and B2 were synthesised, each consisting of three electron donor and three electron acceptor redox centres linked symmetrically or asymmetrically by the hexaarylbenzene framework. Triarylamines represent in all these compounds the electron donors, whereas the electron poor centres were triarylboranes in B1 and B2 and PCTM centres in HAB-S and HAB-A, respectively. The hexaarylbenzenes were obtained by cobalt catalysed cyclotrimerisation of the respective tolan precursors. In addition, Star was synthesised, which consists of a central PCTM linked to three triarylamin centres by tolan bridging units in a star-like configuration. The hexaarylbenzene S1a/b substituted with six squaraine chromophores could not be realised. It is assumed that the cyclotrimerisation catalyst Co2(CO)8 does not tolerate the essential hydroxyl groups in the tolan precursor S2a. The alternative reaction pathway to execute the cyclotrimerisation reaction first and introduce the hydroxyl groups thereafter failed as well, because the required hexaarylbenzene substituted by six semisquaric acid moieties could not be synthesised. However, energy transfer interactions could be investigated in the tolan precursor S2a with two squaraine units to obtain information about the electronic coupling provided by the tolan bridge. For all multidimensional compounds model molecules were synthesised with only a single donor-acceptor pair (B3, Star-Model and HAB-Model). This allows a separate consideration of energy and charge transfer processes. It has to be stressed that in all before mentioned multidimensional compounds the "through bond" energy transfer interaction between neighbouring IV-CT states is identical to a transfer of a single electron between two redox centres of the same kind (e.g. TAA -> TAA+). The latter can be analysed by electron transfer theory. This situation is observed when the two IV-CT states transferring energy share one redox centre. All compounds containing PCTM centres were characterised by paramagnetic resonance spectroscopy. Thereby, a weak interaction between the three PCTM units in HAB-S and HAB-A was observed. In addition, when oxidising Star-Model, a strongly interacting singlet or triplet state was obtained. In contrast, signals corresponding to a weakly interacting biradical were obtained for HAB-Model+. This indicates a strong electronic coupling between the redox centres provided by the tolan bridge and a weak coupling when linked by the hexaarylbenzene. This trend is supported by UV/Vis/NIR absorption measurements. The analysis of the observed IV-CT absorption bands by electron transfer theory reveals a weak electronic coupling of V = 340 cm-1 in HAB-Model and a distinctly stronger coupling of V = 1190-2900 cm-1 in Star-Model. In the oxidised HAB-S+, Star+ and Star-Model+ a charge transfer reversed from that of the neutral species, that is, from the PCTM radical to the electron poorer cationic TAA centre, was observed by spectroelectrochemistry. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed, induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (tau = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together the identity between energy transfer and electron transfer in the specific systems were made apparent. It has to be remarked that neither energy transfer nor charge transfer theory can account for the very fast energy transfer in Star. The electrochemical and photophysical properties of B1 and B2 were investigated by cyclic voltammetry, absorption and fluorescence measurements and were compared to B3 with only one neighbouring donor-acceptor pair. For the asymmetric B2 CV measurements show three oxidations as well as three reduction peaks whose peak separation is greatly influenced by the conducting salt due to ion-pairing and shielding effects. Consequently, peak separations cannot be interpreted in terms of electronic couplings in the generated mixed valence species. Transient absorption, fluorescence solvatochromism and absorption spectra show that charge transfer states from the amine to the boron centres are generated after optical excitation. The electronic donor-acceptor interaction is weak though as the charge transfer has to occur predominantly through space. The electronic coupling could not be quantified as the CT absorption band is superimposed by pi-pi* transitions localised at the amine and borane centres. However, this trend is in good agreement to the weak coupling measured for HAB-Model. Both transient absorption and fluorescence upconversion measurements indicate an ultrafast stabilisation of the charge transfer state in B1- B3 similar to the corresponding observations in HAB-S and Star. Moreover, the excitation energy of the localised excited charge transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within fluorescence lifetime (ca. 60 ns). This was proved by steady state fluorescence anisotropy measurements, which further indicate a symmetry breaking in the superficially symmetric HAB. Anisotropic fluorescence upconversion measurements confirm this finding and reveal a time constant of tau = 2-3 ps for the energy transfer in B1 and B2. It has to be stressed that, although the geometric structures of B1 and HAB-S are both based on the same framework and furthermore the neighbouring CT states show in both cases similar Coulomb couplings and negligible "through bond" couplings, very fast energy transfer is observed in B1 whereas in HAB-S the energy is not redistributed within the excited state lifetime. To explain this, it has to be kept in mind that the energy transfer and the relaxation of the CT state are competing processes. The latter is influenced moreover by the solvent viscosity. Hence, it is assumed that this discrepancy in energy transfer behaviour is caused by monitoring the excited state in solvents of varying viscosity. Adding fluoride ions causes the boron centres to lose their acceptor ability due to complexation. Consequently, the charge transfer character in the donor-acceptor chromophores vanishes which could be observed in both the absorption and fluorescence spectra. However, the fluoride sensor ability of the boron centre is influenced strongly by the moisture content of the solvent possibly due to hydrogen bonding of water to the fluoride anions. UV/Vis/NIR absorption measurements of S2a show a red-shift by 1800 cm-1 of the characteristic squarain band compared to the model compound S20. From exciton theory a Coulomb coupling of V = 410 cm-1 is calculated which cannot account for this strong spectral shift. Consequently, "through-bond" interactions have to contribute to the strong communication between the two squaraine chromophores in S2a. This is in accordance with the strong charge transfer coupling calculated for the tolan spacer in Star-Model.}, subject = {Energietransfer }, language = {en} } @article{StaikovaPericEngelsetal.1994, author = {Staikova, M. and Peric, M. and Engels, Bernd and Peyerimhoff, S. D.}, title = {Ab initio Investigation of the Structure of the X\(^2\)A', A\(^2\)A'' (1\(^2\)Π) Spectral System of HCO: Investigation of the Magnetic Hyperfine Effects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59089}, year = {1994}, abstract = {Results ofan ab initio study ofthe hyperfine structure of the X\(^2\)A', A\(^2\) A" ( 1\(^2 \Pi\)) system ofthe formyl radical are presented. Special attention is paid to the analysis of the interplay between the vibronic and magnetic hyperfine etfects. The results of computations are in very good agreement with the available experimental findings. The values for the hyperfine coupling constants in lower bending Ievels of both electronic species are predicted.}, subject = {Organische Chemie}, language = {en} } @article{StaikovaEngelsPericetal.1993, author = {Staikova, M. and Engels, Bernd and Peric, M. and Peyerimhoff, S. D.}, title = {Ab initio calculation of the vibronically averaged hyperfine coupling constants in the two lowest electronic states of H\(_2\)O\(^+\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58998}, year = {1993}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} } @article{StaikovaEngelsPeric1994, author = {Staikova, M. and Engels, Bernd and Peric, M.}, title = {Ab initio investigation of the hyperfine structure in the 1\(^2\)Π\(_u\)(X\(^2\)A\(_1\), A\(^2\)B\(_1\) system of BH\(_2\))}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59000}, year = {1994}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} } @phdthesis{Stahl2005, author = {Stahl, Rainer}, title = {Electroactive Conjugated Polymers as Charge-Transport Materials for Optoelectronic Thin-Film Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work the electrochemical and spectroelectrochemical properties of a series of pi-conjugated organic polymers were studied. The polymers were deposited on platinum electrodes or ITO-coated glass substrates by potentiodynamic electro-polymerisation of the corresponding monomeric precursor molecules. The electro-chemical and photophysical properties of the triarylborane monomers were studied in detail in order to estimate possible influences on the behaviour of the corresponding polymer. The first part of this work aimed at the synthesis and investigation of conjugated donor-acceptor polymers which combine the prerequisites of an OLED within one material: the transport of positive and negative charges and the formation of emissive excited states. With the carbazole-substituted oxadiazoles 1-3 it was shown that on the one hand the carbazole functionality is suitable for enabling the electrochemical polymerisation of the monomers and on the other hand it facilitates reversible p-doping of the resultant polymers. Although n-doping of poly-1-poly-3 is possible due to the electron-deficient oxadiazole rings, it causes the continuous degradation of these electron-acceptor units. Interestingly, this process does not influence the capability of p-doping of the polymers. With respect to its electrochemical and spectroelectrochemical properties the behaviour of the borane polymer poly-4 is absolutely identical with that of the oxadiazole polymers. Moreover, the optical excitation of poly-4 in the solid state leads to the emission of blue-green light which suggests that this polymer might also possess electroluminescent properties. AFM-measurements of poly-4 films on ITO-coated glass substrates revealed, that the film thickness can be controlled to a certain extent by the number of polymerisation redox cycles. It was shown from the electrochemical and photophysical properties of the triarylboranes 4-6 that the pi-pi-interaction between boron and nitrogen atoms is comparably weak in these molecules. This leads to an unexpected ground-state polarisation with a partially positive boron atom and a partially negative nitrogen atom. Moreover, it was found that TAB 4 possesses a lower symmetry than D3 in solution and that excitation energy can be transferred amongst the three subchromophores of 4. By titration experiments it was also demonstrated that TAB 4 can reversibly bind fluoride ions and that the binding event significantly influences the optical absorption characteristics of the chromophore. It can be assumed, that the above mentioned properties, which have a profound influence on the photophysical behaviour of these triarylborane chromophores, also determine the behaviour of the corresponding polymer in a solid state environment. The aim of the second part of this work was the investigation of purely n-conducting materials based on electron-deficient borane and viologen polymers. The corresponding precursor molecules should be polymerised on platinum electrodes by reductive electropolymerisation. However, a reductive polymerisation was not possible for the borane monomer 19 which is thought to be due to a strong localisation of the unpaired electron on the central boron atom of the radical anion. An electropolymerisation of the cyano-substituted bispyridinio-compound 17 failed because of the poor quality of CN- as a leaving group. Thus, a synthesis of the analogous isomer 18 was developed, in which the cyano-substituents were exchanged by the better leaving group Cl-. The viologen polymer poly-18, which can be regarded as an electron-deficient iso-electronic analogue of poly(para-phenylene), was successfully deposited on a platinum electrode by reductive electropolymerisation of 18. Poly-18 can be reversibly n-doped at comparably low potentials; however, at higher potentials the polymer is overcharged and destroyed irreversibly. As the synthetic strategy for 18 allows the variation of both spacer unit and leaving group in the last two steps of the reaction sequence, a series of analogous compounds can be easily synthesised using this route.}, subject = {Polymerhalbleiter}, language = {en} } @article{SpenstYoungWasielewskietal.2016, author = {Spenst, Peter and Young, Ryan M. and Wasielewski, Michael R. and W{\"u}rthner, Frank}, title = {Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {8}, doi = {10.1039/c6sc01574c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191252}, pages = {5428-5434}, year = {2016}, abstract = {Cofacial positioning of two perylene bisimide (PBI) chromophores at a distance of 6.5 angstrom in a cyclophane structure prohibits the otherwise common excimer formation and directs photoexcited singlet state relaxation towards intramolecular symmetry-breaking charge separation (τ\(_{CS}\) = 161 +/- 4 ps) in polar CH\(_2\)Cl\(_2\), which is thermodynamically favored with a Gibbs free energy of ΔG\(_{CS}\) = -0.32 eV. The charges then recombine slowly in τ\(_{CR}\) = 8.90 +/- 0.06 ns to form the PBI triplet excited state, which can be used subsequently to generate singlet oxygen in 27\% quantum yield. This sequence of events is eliminated by dissolving the PBI cyclophane in non-polar toluene, where only excited singlet state decay occurs. In contrast, complexation of electron-rich aromatic hydrocarbons by the host PBI cyclophane followed by photoexcitation of PBI results in ultrafast electron transfer (<10 ps) from the guest to the PBI in CH\(_2\)Cl\(_2\). The rate constants for charge separation and recombination increase as the guest molecules become easier to oxidize, demonstrating that charge separation occurs close to the peak of the Marcus curve and the recombination lies far into the Marcus inverted region.}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @article{SolgerKunzFinketal.2020, author = {Solger, Franziska and Kunz, Tobias C. and Fink, Julian and Paprotka, Kerstin and Pfister, Pauline and Hagen, Franziska and Schumacher, Fabian and Kleuser, Burkhard and Seibel, J{\"u}rgen and Rudel, Thomas}, title = {A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204111}, year = {2020}, abstract = {Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.}, language = {en} } @article{SolDehmHechtetal.2018, author = {Sol, Jeroen A. H. P. and Dehm, Volker and Hecht, Reinhard and W{\"u}rthner, Frank and Schenning, Albertus P. H. J. and Debije, Michael G.}, title = {Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix}, series = {Angewandte Chemie International Edition}, volume = {57}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.201710487}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238778}, pages = {1030-1033}, year = {2018}, abstract = {Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the F{\"o}rster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy.}, language = {en} } @phdthesis{Smolan2022, author = {Smolan, Willi}, title = {Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation}, doi = {10.25972/OPUS-27873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 \%, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N'-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 \% were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 \% due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 \% conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 \%. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 \%) and negatively charged functionalities via phosphonamide moieties (100 \%) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests.}, subject = {Wasserl{\"o}sliche Polymere}, language = {en} } @phdthesis{Siewert2021, author = {Siewert, Aaron}, title = {Nucleotide analogs as rigid spin labels for DNA and RNA}, doi = {10.25972/OPUS-24765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247657}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nucleic acids are one of the important classes of biomolecules together with carbohydrates, proteins and lipids. Both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are most well known for their respective roles in the storage and expression of genetic information. Over the course of the last decades, nucleic acids with a variety of other functions have been discovered in biological organisms or created artificially. Examples of these functional nucleic acids are riboswitches, aptamers and ribozymes. In order to gain information regarding their function, several analytical methods can be used. Electron paramagnetic resonance (EPR) spectroscopy is one of several techniques which can be used to study nucleic acid structure and dynamics. However, EPR spectroscopy requires unpaired electrons and because nucleic acids themselves are not paramagnetic, the incorporation of spin labels which carry a radical is necessary. Here, three new spin labels for the analysis of nucleic acids by EPR spectroscopy are presented. All of them share two important design features. First, the paramagnetic center is located at a nitroxide, flanked by ethyl groups to prevent nitroxide degradation, for example during solid phase synthesis. Furthermore, they were designed with rigidity as an important quality, in order to be useful for applications like pulsed electron double resonance (PELDOR) spectroscopy, where independent motion of the spin labels relative to the macromolecule has a noticeable negative effect on the precision of the measurements. Benzi-spin is a spin label which differs from most previous examples of rigid spin labels in that rather than being based on a canonical nucleoside, with a specific base pairing partner, it is supposed to be a universal nucleoside which is sufficiently rigid for EPR measurements when placed opposite to a number of different nucleosides. Benzi-spin was successfully incorporated into a 20 nt oligonucleotide and its base pairing behavior with seven different nucleosides was examined by UV/VIS thermal denaturation and continuous wave (CW) EPR experiments. The results show only minor differences between the different nucleosides, thus confirming the ability of benzi-spin to act as a universally applicable spin label. Lumi-spin is derived from lumichrome. It features a rigid scaffold, as well as a free 2'-hydroxy group, which should make it well suited for PELDOR experiments once it is incorporated into RNA oligonucleotides. E{\c{C}}r is based on the {\c{C}} family of spin labels, which contains the most well known rigid spin labels for nucleic acids to this day. It is essentially a version of E{\c{C}}m with a free 2'-hydroxy group. It was converted to triphosphate E{\c{C}}rTP and used for primer extension experiments to test the viability of enzymatic incorporation of rigid spin labels into oligonucleotides as an alternative to solid-phase synthesis. Incorporation into DNA by Therminator III DNA polymerase in both single-nucleotide and full-length primer extensions was achieved. All three of these spin labels represent further additions to the expanding toolbox of EPR spectroscopy on nucleic acids and might prove valuable for future research.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{ShenBialasHechtetal.2021, author = {Shen, Chia-An and Bialas, David and Hecht, Markus and Stepanenko, Vladimir and Sugiyasu, Kazunori and W{\"u}rthner, Frank}, title = {Polymorphism in squaraine dye aggregates by self-assembly pathway differentiation: panchromatic tubular dye nanorods versus J-aggregate nanosheets}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, number = {21}, edition = {60}, doi = {10.1002/anie.202102183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256443}, pages = {11949-11958}, year = {2021}, abstract = {A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores.}, language = {en} } @phdthesis{Shen2021, author = {Shen, Chia-An}, title = {Dicyanomethylene Squaraines: Aggregation and G-Quadruplex Complexation}, doi = {10.25972/OPUS-24359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Squaraine dyes have attracted more attention in the past decade due to their strong and narrow absorption and fluorescence along with the easily functionalized molecular structure. One successful approach of core functionalization is to replace one oxygen of the squaric carbonyl group with a dicyanomethylene group, which shifts the absorption and emission into the near infrared (NIR) region and at the same time leads to a rigid, planar structure with C2v symmetry. However, such squaraines tend to aggregate cofacially in solution due to dispersion forces and dipole-dipole interactions, usually leading to H-type exciton coupling with undesired blue-shifted spectrum and quenched fluorescence. Therefore, the goal of my research was the design of dicyanomethylene-substituted squaraine dyes that self-assemble into extended aggregates in solution with J-type coupling, in order to retain or even enhance their outstanding optical properties. Toward this goal, bis(squaraine) dyes were envisioned with two squaraine units covalently linked to trigger a slip-stacked packing motif within the aggregates to enable J-type coupling. In my first project, bis(squaraine) dye BisSQ1 was synthesized, in which two dicyanomethylene squaraine chromophores are covalently linked. Concentration and temperature-dependent UV/Vis/NIR spectroscopy experiments reveal that BisSQ1 undergoes cooperative self-assembly resulting in J-type aggregates in a solvent mixture of toluene/1,1,2,2-tetrachloroethane (TCE) (98:2, v/v). The J type exciton coupling is evident from the significantly red shifted absorption maximum at 886 nm and the fluorescence peak at 904 nm. In conclusion, this was a first example to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by simply connecting two dyes in a head-to-tail bis chromophore structure. Connecting two squaraine dyes with an additional phenylene spacer (BisSQ2) leads to two different polymorphs with very distinct absorption spectra upon cooling down a solution of BisSQ2 in a solvent mixture of toluene/TCE (98:2, v/v) with different rates. Accordingly, rapid cooling resulted in rigid helical nanorods with an absorption spectrum showing a panchromatic feature, while slow cooling led to a sheet-like structure with a significant bathochromic shift in the absorption spectrum. It was discovered that the conventional molecular exciton model failed to explain the panchromatic absorption features of the nanorods for the given packing arrangement, therefore more profound theoretical investigations based on the Essential States Model (ESM) were applied to unveil the importance of intermolecular charge transfer (ICT) to adequately describe the panchromatic absorption spectrum. Moreover, the red-shift observed in the spectrum for the sheet-like structure can be assigned to the interplay of Coulomb coupling and ICT-mediated coupling. Furthermore, the same bis-chromophore strategy was adopted for constructing an NIR-II emitter with a bathochromically-shifted spectrum. In chloroform, BisSQ3 exhibits an absorption maximum at 961 nm with a significant bathochromic shift (1020 cm-1) compared to the reference mono-squaraine SQ, indicating intramolecular J-type coupling via head-to-tail arrangement of two squaraine dyes. Moreover, BisSQ3 shows a fluorescence peak at 971 nm with a decent quantum yield of 0.33\%. In less polar toluene, BisSQ3 self-assembles into nanofibers with additional intermolecular J-type coupling, causing a pronounced bathochromic shift with absorption maximum at 1095 nm and a fluorescence peak at 1116 nm. Thus, connecting two quinoline-based squaraines in a head-to-tail fashion leads to not only intra-, but also intermolecular J-type exciton coupling, which serves as a promising strategy to shift the absorption and emission of organic fluorophores into the NIR-II window while retaining decent quantum yields. In conclusion, my research illustrates based on squaraine dyes how a simple modification of the molecular structure can significantly affect the aggregation behavior and further alter the optical properties of dye aggregates. Elongated supramolecular structures based on dicyanomethylene substituted squaraine dyes were successfully established by covalently linking two squaraine units to form a bis-chromophore structure. Then, a simple but efficient general approach was established to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by directly connecting two squaraine dyes in a head-to-tail fashion without spacer units. Moreover, the additional spacer between the squaraine dyes in BisSQ2 allowed different molecular conformations, which leads to two different morphologies depending on the cooling rates for a hot solution. Hence, this is a promising strategy to realize supramolecular polymorphism. In general, it is expected that the concept of constructing J-aggregates by the bis-chromophore approach can be extended to entirely different classes of dyes since J-aggregates possess a variety of features such as spectral shifts into the NIR window, fluorescence enhancement, and light harvesting, which are commonly observed and utilized for numerous fundamental studies and applications. Moreover, the insights on short-range charge transfer coupling for squaraine dyes is considered of relevance for all materials based on alternating donor-acceptor π-systems. The panchromatic spectral feature is in particular crucial for acceptor-donor-acceptor (ADA) dyes, which are currently considered as very promising materials for the development of bulk heterojunction solar cells.}, subject = {Squaraine}, language = {en} } @phdthesis{Shao2012, author = {Shao, Changzhun}, title = {Programming Self-assembly: Formation of Discrete Perylene Bisimide Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69298}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The objective of this thesis focuses on the development of strategies for precise control of perylene bisimide (PBI) self-assembly and the in-depth elucidation of structural and optical features of discrete PBI aggregates by means of NMR and UV/Vis spectroscopy. The strategy for discrete dimer formation of PBIs is based on delicate steric control that distinguishes the two facets of the central perylene surface. The strategy applied in this thesis for accessing discrete PBI quadruple and further oligomeric stacks relies on backbone-directed PBI self-assembly. For this purpose, two tweezer-like PBI dyads bearing the respective rigid backbones, diphenylacetylene (DPA) and diphenylbutydiyne (DPB), were synthesized. The distinct aggregation behavior of these structurally similar PBI dyads can be ascribed to the intramolecular distance between the two PBI chromophores imparted by the DPA and DPB spacers.}, subject = {Farbstoff}, language = {en} } @phdthesis{Shamburger2021, author = {Shamburger, William}, title = {Total Synthesis of Mono- and Dimeric Naphthylisoquinoline Alkaloids and Related Analogs}, doi = {10.25972/OPUS-25061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250612}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Our research group focusses on the isolation, structural elucidation, and synthesis of bioactive natural products, among others, the naphthylisoquinoline alkaloids from tropical lianas. This intriguing class of compounds comprises representatives with activities against, e.g. P. falciparum, the cause of Malaria tropica, against the neglected disease leishmaniasis, and, as discovered more recently, against different types of cancer cells. Based on the high potency of theses extraordinary secondary metabolites, this thesis was devoted to the total synthesis of bioactive natural products and closely related analogs.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{Sengupta2011, author = {Sengupta, Sanchita}, title = {Bio-inspired Zinc Chlorin Dye Assemblies for Supramolecular Electronics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66935}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Chlorophylls are the most important pigments owing to their involvement in photosynthesis. They perform multiple functions that arise due to their optical and redox as well as packing properties. Semisynthetic zinc chlorins investigated in this thesis are the counterparts for the natural protein-free bacteriochlorophyll (BChl) c assemblies in light-harvesting (LH) systems in bacterial chlorosomes. The major advantage of the zinc chlorin model compounds over the native BChls lies in their facile semisynthetic accessibility from chlorophyll a (Chl a), their higher chemical stability and the possibility to influence their packing by suitable chemical modifications of peripheral side chains. Whilst the favorable excitonic properties and the suitability of ZnChl and natural BChl c dye aggregates for long distance exciton transport are well documented, charge transport properties of aggregates of semisynthetic ZnChls are hitherto unexplored. The present study involves structural elucidations of aggregates of a variety of semisynthetic zinc chlorin derivatives in solution, in solid state and on surfaces by combination of spectroscopic, crystallographic and microscopic techniques, followed by investigation of charge transport properties and conductivities of these aggregates. Chart 1 shows the different ZnChls synthesized in this work that are functionalized with hydroxy or methoxy substituents at 31 position and contain different substituents at the 172-position benzyl ester functional group. The self-assembly of these dyes is strongly dependent upon their chemical structures. While ZnChls 1a, 2a, 3, which are functionalized with 31-hydroxy group bearing dodecyl and oligoethylene glycol side chains form well-soluble rod aggregates, the corresponding 31-methoxy functionalized counterparts 1b, 2b form stacks in solution and on surfaces. These supramolecular polymers have been studied in detail in Chapter 3 by UV/Vis and circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). These studies provided useful insights into the aggregation process of these two types of aggregates. Whereas 31-hydroxy functionalized ZnChl 1a self-assemble into rod aggregates via an isodesmic mechanism, corresponding stack aggregates of ZnChl 1b are formed by a cooperative nucleation-elongation pathway. Detailed electron microscopic studies such as transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) provided unequivocal evidence for hollow tubular nanostructures of water-soluble 31-hydroxy zinc chlorin 3 aggregates for the first time. The measured tube diameter of ~ 5-6 nm of these aggregates is in excellent agreement with electron microscopy data of BChl c rod aggregates in chlorosomes (Chloroflexus aurantiacus, diameter ~ 5-6 nm) and thus complied with the tubular model postulated by Holzwarth and Schaffner... In concord with their highly organized structures, micrometer-scale one dimensionality, robust nature and efficient charge transport capabilities, these self-assembled ZnChl nanotubular, stack and liquid crystalline assemblies are highly promising for supramolecular electronic applications. Research efforts in utilizing these assemblies for (opto)electronic device fabrication, for instance, in organic field effect transistors, should thus be rewarding in the future...}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Selby2022, author = {Selby, Joshua}, title = {Design and Chiroptical Properties of Chirally Substituted Indolenine Squaraine Mono-, Oligo-, and Polymers}, doi = {10.25972/OPUS-28206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A series of monomeric chirally substituted indolenine squaraine monomers were successfully synthesized and utilized for the construction of various oligo- and polymers, in order to study their chiroptical properties in terms of exciton chirality. The quaternary carbon atom at the 3-position of the indolenine subunit, as well as the alkyl side chain attached to the indolenine nitrogen were selected as the most suitable site for chiral functionalization. For the C(3)-chiral derivatives, two synthetic routes depending on the desired substitution at the stereogenic center were established. The chiral side chains were prepared via Evans asymmetric alkylation where the resulting branching point at the 2 position constituted the chiral center. While the chiral substitution only had minor effects on the linear optical properties and geometric structure of the chromophore, all compounds exhibited a distinct and measurable CD signal that correlated with the distance of the chiral center to the central chromophore. Polymers bearing chiral side chains exhibited a solvent- and temperature-dependent helix-coil equilibrium, which was influenced by the type of side chain used. CD spectroscopy revealed the helical conformation to possess a preferred twist sense, and temperature-dependent measurements showed the degree of homohelicity to be nearly complete in certain cases. Furthermore, a CPL signal was able to be obtained for the helical conformer of one polymer. Various (co)oligo- and polymers comprising the C(3)-chiral monomers only displayed a solvent-independent J-type absorption behavior and thus did not form helical conformations in solution. CD spectroscopy revealed a solvent-dependent adoption of quasi-enantiomeric conformers, which was elucidated by quantum chemical TDDFT calculations.}, subject = {Squaraine}, language = {en} } @unpublished{SeitzJungnickelKleiberetal.2024, author = {Seitz, Florian and Jungnickel, Tina and Kleiber, Nicole and Kretschmer, Jens and Dietzsch, Julia and Adelmann, Juliane and Bohnsack, Katherine E. and Bohnsack, Markus T. and H{\"o}bartner, Claudia}, title = {Atomic mutagenesis of N\(^6\)-methyladenosine reveals distinct recognition modes by human m\(^6\)A reader and eraser proteins}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.4c00626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352376}, year = {2024}, abstract = {N\(^6\)-methyladenosine (m\(^6\)A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m\(^6\)A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m\(^6\)A by proteins. Here, we use atomic mutagenesis of m\(^6\)A to systematically investigate the mechanisms of the two human m\(^6\)A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m\(^6\)A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m\(^6\)A analogues introduced in this work will be useful probes for other proteins in m\(^6\)A research.}, language = {en} } @phdthesis{Seitz2023, author = {Seitz, Florian}, title = {Synthesis, enzymatic recognition and antiviral properties of modified purine nucleosides}, doi = {10.25972/OPUS-31323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313238}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Beyond the four canonical nucleosides as primary building blocks of RNA, posttranscriptional modifications give rise to the epitranscriptome as a second layer of genetic information. In eukaryotic mRNA, the most abundant posttranscriptional modification is N6-methyladenosine (m6A), which is involved in the regulation of cellular processes. Throughout this thesis, the concept of atomic mutagenesis was employed to gain novel mechanistic insights into the substrate recognition by human m6A reader proteins as well as in the oxidative m6A demethylation by human demethylase enzymes. Non-natural m6A atomic mutants featuring distinct steric and electronic properties were synthesized and incorporated into RNA oligonucleotides. Fluorescence anisotropy measurements using these modified oligonucleotides revealed the impact of the atomic mutagenesis on the molecular recognition by the human m6A readers YTHDF2, YTHDC1 and YTHDC2 and allowed to draw conclusions about structural prerequisites for substrate recognition. Furthermore, substrate recognition and demethylation mechanism of the human m6A demethylase enzymes FTO and ALKBH5 were analyzed by HPLC-MS and PAGE-based assays using the modified oligonucleotides synthesized in this work. Modified nucleosides not only expand the genetic alphabet, but are also extensively researched as drug candidates. In this thesis, the antiviral mechanism of the anti-SARS-CoV-2 drug remdesivir was investigated, which causes delayed stalling of the viral RNA-dependent RNA polymerase (RdRp). Novel remdesivir phosphoramidite building blocks were synthesized and used to construct defined RNA-RdRp complexes for subsequent studies by cryogenic electron microscopy (cryo-EM). It was found that the 1'-cyano substituent causes Rem to act as a steric barrier of RdRp translocation. Since this translocation barrier can eventually be overcome by the polymerase, novel derivatives of Rem with potentially improved antiviral properties were designed.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{SeifertShoyamaSchmidtetal.2016, author = {Seifert, Sabine and Shoyama, Kazutaka and Schmidt, David and W{\"u}rthner, Frank}, title = {An electron-poor C\(_{64}\) nanographene by palladium-catalyzed cascade C-C bond formation: one-pot synthesis and single-crystal structure analysis}, series = {Angewandte Chemie-International Edition}, volume = {55}, journal = {Angewandte Chemie-International Edition}, number = {22}, doi = {10.1002/anie.201601433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188889}, pages = {6390-6395}, year = {2016}, abstract = {Herein, we report the one-pot synthesis of an electron-poor nanographene containing dicarboximide groups at the corners. We efficiently combined palladium-catalyzed Suzuki-Miyaura cross-coupling and dehydrohalogenation to synthesize an extended two-dimensional pi-scaffold of defined size in a single chemical operation starting from N-(2,6-diisopropylphenyl)-4,5-dibromo-1,8-naphthalimide and a tetrasubstituted pyrene boronic acid ester as readily accessible starting materials. The reaction of these precursors under the conditions commonly used for Suzuki-Miyaura cross-coupling afforded a C\(_{64}\) nanographene through the formation of ten C-C bonds in a one-pot process. Single-crystal X-ray analysis unequivocally confirmed the structure of this unique extended aromatic molecule with a planar geometry. The optical and electrochemical properties of this largest ever synthesized planar electron-poor nanographene skeleton were also analyzed.}, language = {en} } @phdthesis{Seifert2018, author = {Seifert, Sabine}, title = {New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C-C Coupling and Core Halogenation-Cyanation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156200}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The thesis describes the development of new synthetic strategies towards planar nanometer-sized and electron-deficient polycyclic aromatic dicarboximides, which are rather unexplored compared with the large variety of electron-rich polycyclic aromatic hydrocarbons and nanographenes. Thus, new polycyclic aromatic systems containing a different number of dicarboximide groups were designed since this class of compounds has revealed its significance in the past due to a range of desirable molecular properties and its high thermal and photochemical stability. The synthetic concept towards these systems includes different C-C coupling techniques that were combined within coupling cascade reactions. Therefore, this thesis provides new insights into the reactivity of aromatic substrates and elucidates mechanistic aspects of C-C coupling cascade reactions to facilitate the precise design of new and desirable materials based on polycyclic aromatic dicarboximides. Furthermore, structure-property relationships as well as the optical and electrochemical properties were investigated by UV/Vis absorption and fluorescence spectroscopy and cyclic or square wave voltammetry. Insights into the molecular structures in the solid state were obtained by single-crystal X-ray analysis. In subsequent studies, highly electron-deficient perylene bisimides and their reduced species have been investigated in detail. Thus, core-functionalized perylene bisimides were synthesized and UV/Vis absorption spectroscopy, spectroelectrochemistry and cyclic or square wave voltammetry were used to determine their optical properties and the stability of the individual reduced species.}, subject = {Kupplungsreaktion}, language = {en} } @unpublished{SednevMykhailiukChoudhuryetal.2018, author = {Sednev, Maksim V. and Mykhailiuk, Volodymyr and Choudhury, Priyanka and Halang, Julia and Sloan, Katherine E. and Bohnsack, Markus T. and H{\"o}bartner, Claudia}, title = {N\(^6\)-methyladenosine-sensitive RNA-cleaving deoxyribozymes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {https://doi.org/10.1002/anie.201808745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171753}, year = {2018}, abstract = {Deoxyribozymes are synthetic enzymes made of DNA that can catalyze the cleavage or formation of phosphodiester bonds and are useful tools for RNA biochemistry. Here we report new RNA-cleaving deoxyribozymes to interrogate the methylation status of target RNAs, thereby providing an alternative method for the biochemical validation of RNA methylation sites containing N\(^6\)-methyladenosine, which is the most wide-spread and extensively investigated natural RNA modification. Using in vitro selection from random DNA, we developed deoxyribozymes that are sensitive to the presence of N\(^6\)-methyladenosine in RNA near the cleavage site. One class of these DNA enzymes shows faster cleavage of methylated RNA, while others are strongly inhibited by the modified nucleotide. The general applicability of the new deoxyribozymes is demonstrated for several examples of natural RNA sequences, including a lncRNA and a set of C/D box snoRNAs, which have been suggested to contain m\(^6\)A as a regulatory element that influences RNA folding and protein binding.}, language = {en} } @unpublished{SednevLiaqatHoebartner2022, author = {Sednev, Maksim V. and Liaqat, Anam and H{\"o}bartner, Claudia}, title = {High-Throughput Activity Profiling of RNA-Cleaving DNA Catalysts by Deoxyribozyme Sequencing (DZ-seq)}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.1c12489}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258520}, year = {2022}, abstract = {RNA-cleaving deoxyribozymes have found broad application as useful tools for RNA biochemistry. However, tedious in vitro selection procedures combined with laborious characterization of individual candidate catalysts hinder the discovery of novel catalytic motifs. Here, we present a new high-throughput sequencing method, DZ-seq, which directly measures activity and localizes cleavage sites of thousands of deoxyribozymes. DZ-seq exploits A-tailing followed by reverse transcription with an oligo-dT primer to capture the cleavage status and sequences of both deoxyribozyme and RNA substrate. We validated DZ-seq by conventional analytical methods and demonstrated its utility by discovery of novel deoxyribozymes that allow for cleaving challenging RNA targets or the analysis of RNA modification states.}, language = {en} } @phdthesis{Seaf2019, author = {Seaf, Shaimaa Fayez Ali Mohammed}, title = {Isolation, structural elucidation, and biological evaluation of Naphthylisoquinoline alkaloids from two African Ancistrocladus species}, doi = {10.25972/OPUS-19158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The indepth metabolic profiling of the crude extracts of two African Ancistrocladus species viz. A. likoko from Central Africa and A. abbreviatus from West Africa, resulted in a total of 87 alkaloids among them 54 new ones. All of the compounds were intensely elucidated by 1D and 2D NMR, HRESIMS, as well as chemical and chiroptical techniques. Among the newly discovered compounds are quinoid naphthylisoquinolines with an ortho-diketone in the naphthalene portion, nor-naphthylisoquinoline alkaloid lacking the always present methyl group at C-1, seco-(ring cleaved) naphthylisoquinolines, and a newly discovered class of natural products called the naphthylisoindolinones. Some of the compounds displayed strong antitumoral activities against human pancreatic cancer cells and leukemia cells in-vitro.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @article{SchaeferBuehlerHeyeretal.2021, author = {Sch{\"a}fer, Natalie and B{\"u}hler, Michael and Heyer, Lisa and R{\"o}hr, Merle I. S. and Beuerle, Florian}, title = {Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {19}, doi = {10.1002/chem.202005276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256762}, pages = {6077-6085}, year = {2021}, abstract = {A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and \(^{1}\)H, \(^{13}\)C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.}, language = {en} } @phdthesis{Schaefer2018, author = {Sch{\"a}fer, Julian}, title = {Synthesis and Photophysical Investigation of Donor-Acceptor-Substituted meta- and para-Benzene Derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im ersten Teil dieser Arbeit wurde die erfolgreiche Synthese einer Serie von bisTriarylamin (bisTAA) Verbindungen vorgestellt. Zum einen wurde das Substitutionmuster an der Benzol Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pX bzw. mX), und zum anderen die energetische Lage der Br{\"u}ckeneinheit durch zwei elektronen-schiebende oder ziehende Substituenten X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Im Falle der meta-Serie wurden auch einige in 4,6-Position substituierte Verbinungen hergestellt (mX46). Die neutral Verbindungen wurden bez{\"u}glich ihrer elektrochemischen und photophysikalischen Eigenschaften untersucht. Durch Oxidation konnten die gemischt valenten (MV), kationischen bisTAA-Verbindungen erzeugt werden. Der thermisch induzierte Lochtransfer (HT) wurde durch temperatur-abh{\"a}ngige ESR-Spektroskopie untersucht. W{\"a}hrend die HT-Rate k und HT-Barriere ΔG in mX unbeeinflusst von den Substituenten X sind, steigen gleichzeitig k und ΔG in der pX-Serie mit zunehmenden Elektonenschub von X an. Diese zun{\"a}chst widerspr{\"u}chliche Beobachtung konnte durch einen ansteigenden Einfluss von L{\"o}sungsmitteleffekten und dadurch resultierend, einer zus{\"a}tzlichen effektiven Barriere erkl{\"a}rt werden. Der optisch induzierte Lochtransfer wurde mittels UV/Vis/NIR-Spektroskopie untersucht. Die pX-Serie zeigte eine Zuhname der elektronischen Kopplung V und dementsprechende eine Abnahme von ΔG, mit Anstieg des elektonenschiebenden Charakters von X. F{\"u}r mX war eine spektroskopische Bestimmung dieser Parameter nicht m{\"o}glich. Die mX46-Serie zeigte ein intermedi{\"a}res Verhalten, wobei MV-Verbindungen mit stark elektronenschiebenden X eine {\"a}hnliche hohe Kopplungen wie pX aufwiesen, was mit Hilfe von DFT-Rechnungen bez{\"u}glich der Molek{\"u}lorbitale erkl{\"a}rt werden konnte. Im zweiten Teil dieser Arbeit wurde die Synthese einer Serie von Verbindungen mit Triarylamin (TAA) als Donor und Naphthalindiimid (NDI) als Akzeptor vorgestellt. Auch hier wurde zum einen das Substitutionmuster an der Benzol-Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pXNDI bzw. mXNDI) variieiet und die energetische Lage der durch X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Außerdem wurde die in 4,6-Position substituierte Verbinungen mOMe46NDI hergestellt. Alle Verbindungen wurden bez{\"u}glich ihrer elektochemischen und photophysikalischen Eigenschaften untersucht. Die Elektronentransferprozesse der Ladungsseparierung (CS) und Ladungsrekombination (CR) dieser Verbindungen sollten mittels transienter Absorptionsspektroskopie (TA) in Toluol untersucht werden. F{\"u}r die Nitroverbindungen p-/mNO2NDI war dies nicht m{\"o}glich, da sich diese unter Bestrahung zersetzten. Die CR von pXNDI waren nicht im ns-Bereich detektierbar, weshalb sich auf die mXNDI-Serie (mit X = OMe-CN) konzentriert wurde. Die CS wurde mittels fs-TA untersucht. Nach optischer Anregung konnte die Bildung eines CS-Zustandes detektiert werden, dessen Bildungsgeschwindigkeit hin zu elektronen-ziehenden Substituenten X steigt. Die CR wurde mit ns-TA untersucht. Sie findet in der Marcus invertierten Region statt und zeichnet sich wird durch ein biexponentialles Abklingverhaten, was durch ein Singulet-Triplett Gleichgewicht im CS-Zustand zustande kommt, aus. Durch Anlegen eines externen Magnetfeldes ließ sich das Abklingverhalten entscheidend ver{\"a}ndern und es konnte eine Singulett-Triplett Aufspaltung nachgewiesen werden. Dieser Befund konnte weiterhin durch Simulation der Abklingkurven best{\"a}tigt werden. In beiden Teilen dieser Arbeit konnte ein entscheidender Einfluss der Benzolbr{\"u}cke auf die auftretenden Ladungstransferprozesse gezeigt werden. F{\"u}r den HT in Grundzustand der MV bisTAA Verbindungen, sowie der ET im angeregten Zustand der Donor-Akzeptor-Verbindungen, wurden die h{\"o}chsten ET-Raten f{\"u}r die para-Serien pX und pXNDI gefunden, w{\"a}hrend die meta-Serien mX und mXNDI deutlch kleine Transferraten aufwiesen. In beiden Studien zeigten die meta46-Verbindungen mX46 und mOMeNDI46 ein intermedi{\"a}res Verhalten, zwischen denen der para- und meta-Verbindungen.}, subject = {Synthese}, language = {en} } @phdthesis{Schulze2016, author = {Schulze, Marcus}, title = {Ruthenium Complexes as Water Oxidation Catalysts and Photosensitizers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der vorliegenden Arbeit werden Aspekte der photokatalytischen Wasseroxidationsreaktion behandelt. Der erste Themenschwerpunkt der Dissertation besch{\"a}ftigt sich mit einem supramolekularen Makrozyklus, der drei Rutheniummetallzentren enth{\"a}lt. Dieser neuartige Katalysator zeigt eine sehr hohe katalytische Aktivit{\"a}t und gew{\"a}hrt neue Einblicke in den Mechanismus der Wasseroxidationsreaktion. Des Weiteren wird auf die mit Licht interagierenden Komponenten der photokatalytischen Wasseroxidation eingegangen. Hierbei haben sich azabenz-anellierte Perylenderivate als vielseitige Farbstoffklasse herausgestellt. Die Kombination dieser Farbstoffe mit Metallkomplexen liefert metallorganische Verbindungen, die als Photosensibilisatoren eingesetzt werden k{\"o}nnen.}, subject = {Farbstoff}, language = {en} } @article{SchulzWuerthner2022, author = {Schulz, Alexander and W{\"u}rthner, Frank}, title = {Folding-induced fluorescence enhancement in a series of merocyanine hetero-folda-trimers}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {2}, doi = {10.1002/anie.202114667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256582}, year = {2022}, abstract = {Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).}, language = {en} } @article{SchroerToussaintBachmannetal.2021, author = {Schroer, Guido and Toussaint, Val{\´e}rie and Bachmann, Stephanie and P{\"o}ppler, Ann-Christin and Gierlich, Christian Henning and Delidovich, Irina}, title = {Functional Phenylboronate Polymers for the Recovery of Diols, Sugar Alcohols, and Saccharides from Aqueous Solution}, series = {ChemSusChem}, volume = {14}, journal = {ChemSusChem}, number = {23}, doi = {10.1002/cssc.202002887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239889}, pages = {5207 -- 5215}, year = {2021}, abstract = {The ongoing transition from fossil to renewable feedstocks demands new efficient processes for an economically viable production of biomass-derived commodities and fine chemicals. Novel energy- and material-efficient product purification and separation will play a crucial role due to altered product and feed composition. The present study comprises the synthesis and tests of cross-linked p-vinylphenylboronate polymers for the separation of 18 diols, sugar alcohols, and saccharides, which can be obtained during biomass processing. The separation was based on molecular recognition, that is, esterification of the phenylboronate with vicinal diols. A correlation of the molecular complexation constant, the polymer swelling, and the maximum adsorption capacity was found. The adsorption curves over time were recorded. Preliminary results on competitive adsorption of binary mixtures showed a high potential for the separation of substrates with significantly different complexation constants. Desorption tests implied easier desorption of substrates that only adsorb on the outer polymer shell.}, language = {en} }