@article{HofrichterMojaradDolletal.2018, author = {Hofrichter, Michaela A. H. and Mojarad, Majid and Doll, Julia and Grimm, Clemens and Eslahi, Atiye and Hosseini, Neda Sadat and Rajati, Mohsen and M{\"u}ller, Tobias and Dittrich, Marcus and Maroofian, Reza and Haaf, Thomas and Vona, Barbara}, title = {The conserved p.Arg108 residue in S1PR2 (DFNB68) is fundamental for proper hearing: evidence from a consanguineous Iranian family}, series = {BMC Medical Genetics}, volume = {19}, journal = {BMC Medical Genetics}, number = {81}, doi = {10.1186/s12881-018-0598-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175755}, year = {2018}, abstract = {Background: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. Methods: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. Results: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. Conclusion: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss.}, language = {en} } @phdthesis{Huegel2018, author = {H{\"u}gel, Markus}, title = {The control of nanomorphology in star-shaped mesogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Stilbene-based star-shaped mesogens have been synthesized with and without fullerene guests. Thermotropic properties and the mechanism of space-filling in the mesophases of these systems have been examined.}, subject = {Fl{\"u}ssigkristall}, language = {en} } @phdthesis{Kropf2018, author = {Kropf, Jan}, title = {The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.}, subject = {Voltage-Clamp-Methode}, language = {en} } @article{KruegerEngstler2018, author = {Kr{\"u}ger, Timothy and Engstler, Markus}, title = {The fantastic voyage of the trypanosome: a protean micromachine perfected during 500 million years of engineering}, series = {Micromachines}, volume = {9}, journal = {Micromachines}, number = {2}, doi = {10.3390/mi9020063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175944}, pages = {63}, year = {2018}, abstract = {The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Nose, Naoko and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on [\(^{11}\)C]meta-Hydroxyephedrine Uptake in the Rat Heart}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162228}, pages = {100}, year = {2018}, abstract = {No abstract available.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @inproceedings{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Higuchi, Takahiro and Solnes, Lilja B. and Rowe, Steven P. and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {The Impact of Ageing on Dopamine Transporter Imaging}, series = {Journal of Nuclear Medicine}, volume = {59}, booktitle = {Journal of Nuclear Medicine}, number = {Supplement No 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162213}, pages = {1646}, year = {2018}, abstract = {No abstract available.}, subject = {Parkinson-Krankheit}, language = {en} } @phdthesis{Wedel2018, author = {Wedel, Carolin}, title = {The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation.}, subject = {Transkription}, language = {en} } @article{KaiserBurekBritzetal.2018, author = {Kaiser, Mathias and Burek, Malgorzata and Britz, Stefan and Lankamp, Frauke and Ketelhut, Steffi and Kemper, Bj{\"o}rn and F{\"o}rster, Carola and Gorzelanny, Christian and Goycoolea, Francisco M.}, title = {The influence of capsaicin on the integrity of microvascular endothelial cell monolayers}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms20010122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284865}, year = {2018}, abstract = {Microvascular endothelial cells are an essential part of many biological barriers, such as the blood-brain barrier (BBB) and the endothelium of the arteries and veins. A reversible opening strategy to increase the permeability of drugs across the BBB could lead to improved therapies due to enhanced drug bioavailability. Vanilloids, such as capsaicin, are known to reversibly open tight junctions of epithelial and endothelial cells. In this study, we used several in vitro assays with the murine endothelial capillary brain cells (line cEND) as a BBB model to characterize the interaction between capsaicin and endothelial tight junctions.}, language = {en} } @phdthesis{Teichert2018, author = {Teichert, Max}, title = {The interest rate risk of banks: current topics}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-070-2}, doi = {10.25972/WUP-978-3-95826-071-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153669}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {XIX, 252}, year = {2018}, abstract = {Die vorliegende Dissertation besch{\"a}ftigt sich mit dem Zins{\"a}nderungsrisiko von Banken. Sie bearbeitet Themen mit hoher aktueller Relevanz angesichts gegenw{\"a}rtiger Entwicklungen in der Geldpolitik, der Volkswirtschaftslehre und der Bankenregulierung. Im ersten Teil werden vier Grundlagen gelegt. Erstens wird die moderne Auffassung des Bankgesch{\"a}fts vorgestellt, der nach Banken Geld in Form von Ersparnissen schaffen, wenn sie Kredite gew{\"a}hren. Mit dieser Auffassung geh{\"o}rt die {\"U}bernahme von Zins{\"a}nderungsrisiken zum normalen Bankgesch{\"a}ft. Zweitens wird ein {\"U}berblick {\"u}ber die Mikro{\"o}konomie des Bankgesch{\"a}fts gegeben, in dem der j{\"u}ngst vollzogene Wechsel zum Paradigma des Risikos dargestellt wird. Unter diesem Paradigma sind Banken wesentlich Risikonehmer auch von Zins{\"a}nderungsrisiko. Drittens wird die Geldtheorie der Transmissionskan{\"a}le zusammengefasst, wobei der Fokus auf dem zuletzt starke Beachtung findenden Risikoneigungskanal liegt. Dieser Transmissionskanal stellt auch eine Verbindung zwischen der Geldpolitik und der {\"U}bernahme von Zins{\"a}nderungsrisiko durch Banken her. Viertens werden Ans{\"a}tze und Spezifika der Behandlung des Zins{\"a}nderungsrisikos von Banken in der {\"o}konomischen Forschung zusammengetragen. Das ist das Handwerkszeug f{\"u}r die Erarbeitung neuer Forschungsbeitr{\"a}ge. Im zweiten Teil werden drei Erweiterungen entwickelt. Die erste Erweiterung begegnet dem nahezu vollst{\"a}ndigen Fehlen von spezifischen Daten zum Zins{\"a}nderungsrisiko von Banken in Deutschland mit einer umfassenden Auswertung allgemeiner, {\"o}ffentlich verf{\"u}gbarer Statistiken. Es zeigt sich, dass das Zins{\"a}nderungsrisiko von Banken in Deutschland {\"u}ber dem Durchschnitt des Euroraums liegt und einem steigenden Trend folgt, der sich insbesondere aus einer Verschiebung hin zu kurzfristigerer Refinanzierung speist. Von den unterschiedlichen Arten von Banken in Deutschland pr{\"a}sentieren sich Sparkassen und Genossenschaftsbanken als besonders exponiert. Die zweite Erweiterung untersucht die Ver{\"a}nderungen der Zinsstruktur in Deutschland und nimmt damit die zweite Komponente des Zins{\"a}nderungsrisikos neben der Position der Banken in den Blick. Analysen historischer sowie prognostizierter Ver{\"a}nderungen weisen auf ein sinkendes Zins{\"a}nderungsrisiko hin. Auch auf Basis einer erg{\"a}nzenden Szenarioanalyse ergeben sich konkrete Kritikpunkte an j{\"u}ngst auf internationaler Ebene beschlossenen regulatorischen Standards sowie genaue Vorschl{\"a}ge zur Erg{\"a}nzung im Rahmen ihrer Implementierung. Die dritte Erweiterung adressiert ein m{\"o}gliches Streben nach Rendite (search for yield) von Banken bei der {\"U}bernahme von Zins{\"a}nderungsrisiko, die geringere Profitabilit{\"a}t zu h{\"o}herer Risiko{\"u}bernahme f{\"u}hren l{\"a}sst. Ein theoretisches Modell f{\"u}hrt dieses Verhalten auf eine plausible Nutzenfunktion von Bankmanagern zur{\"u}ck. Eine empirische Untersuchung belegt die statistische Signifikanz und {\"o}konomische Relevanz mit Daten aus Deutschland.}, subject = {Zins{\"a}nderungsrisiko}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{BoehmMeiningerTeschetal.2018, author = {Boehm, Anne and Meininger, Susanne and Tesch, Annemarie and Gbureck, Uwe and M{\"u}ller, Frank A.}, title = {The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers}, series = {Materials}, volume = {11}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {10.3390/ma11020192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197808}, pages = {192}, year = {2018}, abstract = {Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5\% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m-2, when utilizing an aqua regia/CaCl2 pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.}, language = {en} } @phdthesis{Schuecker2018, author = {Sch{\"u}cker, Katharina}, title = {The molecular architecture of the meiotic chromosome axis as revealed by super-resolution microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {During meiosis proteins of the chromosome axis are important for monitoring chromatin structure and condensation, for pairing and segregation of chromosomes, as well as for accurate recombination. They include HORMA-domain proteins, proteins of the DNA repair system, synaptonemal complex (SC) proteins, condensins and cohesins. To understand more about their function in shaping the meiotic chromosome it is crucial to establish a defined model of their molecular architecture. Up to now their molecular organization was analysed using conventional methods, like confocal scanning microscopy (CLSM) and transmission electron microscopy (TEM). Unfortunately, these techniques are limited either by their resolution power or their localization accuracy. In conclusion, a lot of data on the molecular organization of chromosome axis proteins stays elusive. For this thesis the molecular structure of the murine synaptonemal complex (SC) and the localization of its proteins as well as of three cohesins was analysed with isotropic resolution, providing new insights into their architecture and topography on a nanoscale level. This was done using immunofluorescence labelling in combination with super-resolution microscopy, line profiles and average position determination. The results show that the murine SC has a width of 221.6 nm ± 6.1 nm including a central region (CR) of 148.2 nm ± 2.6 nm. In the CR a multi-layered organization of the central element (CE) proteins was verified by measuring their strand diameters and strand distances and additionally by imaging potential anchoring sites of SYCP1 (synaptonemal complex protein 1) to the lateral elements (LEs). We were able to show that the two LEs proteins SYCP2 and SYCP3 do co-localize alongside their axis and that there is no significant preferential localization towards the inner LE axis of SYCP2. The presented results also predict an orderly organization of murine cohesin complexes (CCs) alongside the chromosome axis in germ cells and support the hypothesis that cohesins in the CR of the SC function independent of CCs. In the end new information on the molecular organization of two main components of the murine chromosome axis were retrieved with nanometer precision and previously unknown details of their molecular architecture and topography were unravelled.}, subject = {Meiose}, language = {en} } @article{SanyalWallaschekGlassetal.2018, author = {Sanyal, Anirban and Wallaschek, Nina and Glass, Mandy and Flamand, Louis and Wight, Darren J. and Kaufer, Benedikt B.}, title = {The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {8}, doi = {10.3390/v10080401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227337}, pages = {401, 1-11}, year = {2018}, abstract = {Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells.}, language = {en} } @article{KohlRutschmann2018, author = {Kohl, Patrick Laurenz and Rutschmann, Benjamin}, title = {The neglected bee trees: European beech forests as a home for feral honey bee colonies}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e4602}, doi = {10.7717/peerj.4602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176512}, year = {2018}, abstract = {It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km\(^{2}\). Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.}, language = {en} } @article{BoertleinDraegerSchoenaueretal.2018, author = {B{\"o}rtlein, Charlene and Draeger, Annette and Schoenauer, Roman and Kuhlemann, Alexander and Sauer, Markus and Schneider-Schaulies, Sybille and Avota, Elita}, title = {The neutral sphingomyelinase 2 is required to polarize and sustain T Cell receptor signaling}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {815}, doi = {10.3389/fimmu.2018.00815}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176572}, year = {2018}, abstract = {By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca\(^{2+}\) mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization.}, language = {en} } @article{CiuchiDiSanteDobrosavljevićetal.2018, author = {Ciuchi, Sergio and Di Sante, Domenico and Dobrosavljević, Vladimir and Fratini, Simone}, title = {The origin of Mooij correlations in disordered metals}, series = {npj Quantum Materials}, volume = {3}, journal = {npj Quantum Materials}, doi = {10.1038/s41535-018-0119-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223148}, year = {2018}, abstract = {Sufficiently disordered metals display systematic deviations from the behavior predicted by semi-classical Boltzmann transport theory. Here the scattering events from impurities or thermal excitations can no longer be considered as additive-independent processes, as asserted by Matthiessen's rule following from this picture. In the intermediate region between the regime of good conduction and that of insulation, one typically finds a change of sign of the temperature coefficient of resistivity, even at elevated temperature spanning ambient conditions, a phenomenology that was first identified by Mooij in 1973. Traditional weak coupling approaches to identify relevant corrections to the Boltzmann picture focused on long-distance interference effects such as "weak localization", which are especially important in low dimensions (1D and 2D) and close to the zero-temperature limit. Here we formulate a strong-coupling approach to tackle the interplay of strong disorder and lattice deformations (phonons) in bulk three-dimensional metals at high temperatures. We identify a polaronic mechanism of strong disorder renormalization, which describes how a lattice locally responds to the relevant impurity potential. This mechanism, which quantitatively captures the Mooij regime, is physically distinct and unrelated to Anderson localization, but realizes early seminal ideas of Anderson himself, concerning the interplay of disorder and lattice deformations.}, language = {en} } @article{ReckeKonitzerLemckeetal.2018, author = {Recke, Andreas and Konitzer, Sarah and Lemcke, Susanne and Freitag, Miriam and Sommer, Nele Maxi and Abdelhady, Mohammad and Amoli, Mahsa M. and Benoit, Sandrine and El-Chennawy, Farha and Eldarouti, Mohammad and Eming, R{\"u}diger and Gl{\"a}ser, Regine and G{\"u}nther, Claudia and Hadaschik, Eva and Homey, Bernhard and Lieb, Wolfgang and Peitsch, Wiebke K. and Pf{\"o}hler, Claudia and Robati, Reza M. and Saeedi, Marjan and S{\´a}rdy, Mikl{\´o}s and Sticherling, Michael and Uzun, Soner and Worm, Margitta and Zillikens, Detlef and Ibrahim, Saleh and Vidarsson, Gestur and Schmidt, Enno}, title = {The p.Arg435His Variation of IgG3 With High Affinity to FcRn Is Associated With Susceptibility for Pemphigus Vulgaris-Analysis of Four Different Ethnic Cohorts}, series = {frontiers in Immunology}, volume = {9}, journal = {frontiers in Immunology}, doi = {10.3389/fimmu.2018.01788}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225073}, pages = {1788, 1-8}, year = {2018}, abstract = {IgG3 is the IgG subclass with the strongest effector functions among all four IgG subclasses and the highest degree of allelic variability among all constant immunoglobulin genes. Due to its genetic position, IgG3 is often the first isotype an antibody switches to before IgG1 or IgG4. Compared with the other IgG subclasses, it has a reduced half-life which is probably connected to a decreased affinity to the neonatal Fc receptor (FcRn). However, a few allelic variants harbor an amino acid replacement of His435 to Arg that reverts the half-life of the resulting IgG3 to the same level as the other IgG subclasses. Because of its functional impact, we hypothesized that the p.Arg435His variation could be associated with susceptibility to autoantibody-mediated diseases like pemphigus vulgaris (PV) and bullous pemphigoid (BP). Using a set of samples from German, Turkish, Egyptian, and Iranian patients and controls, we were able to demonstrate a genetic association of the p.Arg435His variation with PV risk, but not with BP risk. Our results suggest a hitherto unknown role for the function of IgG3 in the pathogenesis of PV.}, subject = {Diagnose}, language = {en} } @article{RolveringZimmerGinolhacetal.2018, author = {Rolvering, Catherine and Zimmer, Andreas D. and Ginolhac, Aur{\´e}lien and Margue, Christiane and Kirchmeyer, M{\´e}lanie and Servais, Florence and Hermanns, Heike M. and Hergovits, Sabine and Nazarov, Petr V. and Nicot, Nathalie and Kreis, Stephanie and Haan, Serge and Behrmann, Iris and Haan, Claude}, title = {The PD-L1-and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by alpha-PD-L1 or alpha-IL6 antibodies}, series = {Journal of Leukocyte Biology}, volume = {104}, journal = {Journal of Leukocyte Biology}, number = {5}, doi = {10.1002/JLB.MA1217-495R}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226974}, pages = {969-985}, year = {2018}, abstract = {Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN--like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other T(H)1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulationmimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexiacan be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.}, language = {en} } @article{DuekingHolmbergSperlich2018, author = {D{\"u}king, Peter and Holmberg, Hans-Christer and Sperlich, Billy}, title = {The potential usefulness of virtual reality systems for athletes: a short SWOT analysis}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, number = {128}, doi = {10.3389/fphys.2018.00128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176178}, year = {2018}, abstract = {No abstract available.}, language = {en} } @article{BurySoundararajanBhartietal.2018, author = {Bury, Susanne and Soundararajan, Manonmani and Bharti, Richa and von B{\"u}nau, Rudolf and F{\"o}rstner, Konrad U. and Oelschlaeger, Tobias A.}, title = {The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.00929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221960}, year = {2018}, abstract = {Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.}, language = {en} } @phdthesis{Schartner2018, author = {Schartner, Christoph}, title = {The regulation of corticotropin releasing hormone receptor 1 gene expression and its role in panic disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150586}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Panic Disorder (PD) is characterized by unexpected, recurrent panic attacks, which are not restricted to certain situations, medication or stimuli. Like other anxiety disorders, PD is a multifactorial disorder and develops through the interaction of genetic and environmental risk factors. Despite an estimated heritability of up to 48\%, no distinct genetic mechanism could be revealed yet. A dysregulation of the stress response has been shown in patients with PD and several studies could find an association of components of the corticotropin-releasing factor (CRF) system with PD. The corticotropin releasing hormone receptor 1 (CRHR1) is the main receptor of CRF in the brain and thus a crucial regulator of cerebral CRF signaling. Recent genetic studies found an association of certain CRHR1 single nucleotide polymorphisms (SNPs) with PD and other anxiety disorders. Among the associated CRHR1 SNPs, rs17689918 showed further evidence in a multilevel study regulating CRHR1 gene expression in panic-relevant brain regions and affecting brain activation in fMRI experiments, as well as flight behavior in a behavioral avoidance task (Weber et al, 2015). Here, we aimed to investigate the underlying neurogenetic and neurobiological mechanisms, by which the rs17689918 risk allele affects CRHR1 gene expression and receptor function, and its putative function in the pathophysiology of PD. Due to its intronic position and the predicted change of splicing regulatory elements by the risk allele of rs17689918, the expression of alternative spliced CRHR1 isoforms was investigated using quantitative real-time PCR (qPCR) in a human post-mortem brain tissue sample. Of eight known CRHR1 isoforms, expression of three CRHR1 isoforms and the CRHR1-IT1-CRHR1 readthrough transcript variant 5 - all expressing the seven transmembrane domains needed for functional receptors - was analyzed. Subsequently, electrophysiological assays were developed to measure the receptor activity of differentially expressed CRHR1 isoforms via co-expressed Kir2.3 potassium channels in vitro. In a second approach, possible epigenetic regulation of CRHR1 expression by rs17689918 was investigated by analyses of DNA methylation patterns of a CpG Island within the CRHR1 promoter region, firstly in a case-control sample for PD and secondly in a healthy control sample, separated in high and low anxious individuals. To investigate a possible gene × epigene × environment interaction, the impact of early life stress by means of childhood trauma was evaluated via the childhood trauma questionnaire (CTQ). Finally, consequences of differential DNA methylation of the CRHR1 promoter region on gene expression were investigated by luciferase-based reporter gene assays in vitro. The expression of CRHR1β was significantly decreased in amygdalae and midbrains of risk allele carriers. The expression of CRHR1-IT1-CRHR1 readthrough transcript variant 5 was significantly increased in forebrains and midbrains of risk allele carriers. All other analyzed isoforms showed no differences in expression between non-risk and risk allele carriers of rs17689918. The electrophysiological recordings of membrane potential showed an activation of Kir2.3 channels by CRHR1β in contrast to an inconsistent mix of activation and inhibition of Kir2.3 by the main isoform CRHR1α. DNA methylation of the CRHR1 promoter region was significantly reduced in panic disorder patients, as well as in high anxious individuals of an independent healthy control sample, but no direct relation to the rs17689918 risk allele could be discerned. However, the combination of carrying the risk allele, low DNA methylation and high CTQ scores lead to increased sum scores in the Beck Anxiety Inventory (BAI) in healthy individuals. Functional analyses revealed an activation of gene expression by decreased DNA methylation of the promoter region in vitro. Our results revealed that rs17689918 regulates CRHR1 function by increasing the expression of alternative transcript variants with altered function. Our analyses of DNA methylation revealed decreased methylation as a new risk factor for panic disorder and high anxious behavior, which in combination with other risk factors like childhood trauma and the rs17689918 risk allele might further increase cognitive and somatic anxiety symptoms. This supports the role of CRHR1 as a plasticity gene of anxiety behavior, i.e. a gene that is highly regulated by epigenetic or post-transcriptional mechanisms in response to environmental stressors. By its role in CRF signaling, the dysregulation of CRHR1 might extensively affect the stress response and contribute to the pathophysiology of stress-related disorders like PD. The understanding of the underlying mechanisms, especially the genetic and epigenetic regulation, would however enhance CRHR1 as a target of improved future therapeutics for PD and other anxiety disorders.}, subject = {Corticoliberin}, language = {en} } @phdthesis{GilPulido2018, author = {Gil Pulido, Jes{\´u}s}, title = {The role of Batf3-dependent dendritic cells and the IL-23 receptor in atherosclerosis}, doi = {10.25972/OPUS-16720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167203}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Cardiovascular diseases represent the leading cause of death worldwide, with myocardial infarction and strokes being the most common complications. In both cases, the appearance of an enlarged artery wall as a consequence of a growing plaque is responsible for the disturbance of the blood flow. The formation of plaques is driven by a chronic inflammatory condition known as atherosclerosis, characterized by an initial step of endothelial cell (EC) dysfunction followed by the recruitment of circulating immune cells into the tunica intima of the vessel. Accumulation of lipids and cells lead to the formation of atheromatous plaques that will define the cardiovascular outcome of an individual. The role of the immune system in the progression of atherosclerosis has been widely recognized. By far, macrophages constitute the most abundant cell type in lesions and are known to be the major source of the lipid-laden foam cell pool during the course of the disease. However, other immune cells types, including T cells, dendritic cells (DCs) or mast cells, among others, have been described to be present in human and mouse plaques. How these populations can modulate the atherogenic process is dependent on their specialized function. DCs constitute a unique population with the ability to bridge innate and adaptive immune responses, mainly by their strong capacity to present antigens bound to a major histocompatibility complex (MHC) molecule. Given their ability to polarize T cells and secrete cytokines, their role in atherosclerosis has gained attention for the development of new therapeutic approaches that could impact lesion growth. Hence, knowing the effect of a specific subset is an initial key step to evaluate its potential for clinical purposes. For example, the basic leucine zipper ATF-like 3 transcription factor (Batf3) controls the development of conventional dendritic cells type 1 (cDCs1), characterized by the expression of the surface markers CD8 and CD103. Initially, they were described to promote both T-helper 1 (Th1) and regulatory T cell (Treg) responses, known to accelerate and to protect against atherosclerosis, respectively. The first part of this thesis aimed to elucidate the potential role of Batf3-dependent DCs in atherosclerosis and concluded that even though systemic immune responses were mildly altered they do not modify the course of the disease and may not represent an attractive candidate for clinical studies. DCs also have the ability to impact lesion growth through the release of a broad range of cytokines, which can either directly impact atherosclerotic plaques by modulating resident cells, or by further polarizing T cell responses. Among others, interleukin (IL) 23, a member of the IL-12 family of cytokines, has received much attention during the past year due to its connection to autoimmunity. IL-23 is known to induce pathogenicity of Th17 cells and is responsible for the development of several autoimmune diseases including multiple sclerosis, psoriasis or rheumatoid arthritis. Interestingly, these patients often present with an accelerated course of atherosclerosis and thus, are at higher risk of developing cardiovascular events. Several epidemiological studies have pointed toward a possible connection between IL-23 and its receptor IL-23R in atherosclerosis, although their exact contribution remains to be elucidated. The second part of this thesis showed that resident antigen-presenting cells (APCs) in the aorta produced IL-23 during the steady state but this secretion was greatly enhanced after incubation with oxidized low-density lipoprotein (oxLDL). Furthermore, disruption of the IL-23R signaling led to decreased relative necrotic plaque area in lesions of Ldlr-/-Il23r-/- mice fed a high-fat diet (HFD) for 6 and 12 weeks compared to Ldlr-/- controls. A proposed mechanism involves that increased IL-23 production in the context of atherosclerosis may promote the pathogenicity of IL-23-responding T cells, especially IL-23R+ γδ T cells in the aortic root. Response to IL-23 might increase the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17 and alter the pro- and anti-inflammatory balance of cytokines in the aortic root. Altogether, these data showed that the IL-23 / IL-23R axis play a role in plaque stability.}, subject = {Arteriosklerose}, language = {en} } @phdthesis{Pennington2018, author = {Pennington, Laura Sophie}, title = {The role of Cadherin-13 in serotonergic neurons during different murine developmental stages}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161331}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Abstract Background: Attention-deficit/ hyperactivity disorder (ADHD) ranges among the most common neurodevelopmental disorders worldwide with a prevalence of 3-12\% in childhood and 1-5\% for adults. Over the last decade extensive genetic research has been conducted in order to determine its causative genetic factors. None of the so far identified susceptibility genes, however, could explain the estimated ADHD heritability of 76\%. In this thesis one of the most promising candidates -Cadherin 13 (Cdh13) - was examined in terms of its influence on the central serotonergic (5-HT) system. In addition to that, the Cdh13 protein distribution pattern was analysed over time. Methods: The developing serotonergic system was compared over three embryonic and postnatal stages (E13.5, E17.5 and P7) in different Cdh13 genotypes (WT, HZ and KO) using immunohistochemistry and various double staining protocols. Results: The raphe nuclei of the 5-HT system develop in spite of Cdh13 absence and show a comparable mature constellation. The cells in the KO, however, are slightly more scattered than in the WT. Furthermore the dynamics of their formation is altered, with a transient delay in migration at E13.5. In early developmental stages the total amount of serotonergic cells is reduced in KO and HZ, though their proportional distribution to the raphe nuclei stays constant. Strikingly, at P7 the absolute numbers are comparable again. Concerning the Cdh13 protein, it shows high concentrations on fibres running through hindbrain and midbrain areas at E13.5. This, however, changes over time, and it becomes more evenly spread until P7. Furthermore, its presence in serotonergic cells could be visualised using confocal microscopy. Since the described pattern is only in parts congruent to the localisation of serotonergic neurons, it is most likely that Cdh13 is present in other developing neurotransmitter systems, such as the dopaminergic one, as well. Conclusion: It could be proven that Cdh13 is expressed in serotonergic cells and that its knockout does affect the developing serotonergic system to some degree. Its absence, however, only slightly and transiently affects the measured parameters of serotonergic system development, indicating a possible compensation of CDH13 function by other molecules in the case of Cdh13 deficiency. In addition further indicators could be found for an influence of Cdh13 on outgrowth and path finding of neuronal processes.}, subject = {Cadherine}, language = {en} } @phdthesis{Kleffel2018, author = {Kleffel, Sonja Beate}, title = {The role of cancer cell-expressed PD-1 in tumorigenesis and tumor immune evasion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Melanoma and Merkel cell carcinoma (MCC) are highly aggressive cancers of the skin that frequently escape immune recognition and acquire resistance to chemotherapeutic agents, which poses a major obstacle to successful cancer treatment. Recently, a new class of therapeutics targeting the programmed cell death-1 (PD-1) immune checkpoint receptor has shown remarkable efficacy in the treatment of both cancers. Blockade of PD-1 on T cells activates cancer-specific immune responses that can mediate tumor regression. The data presented in this Ph.D. thesis demonstrates that PD-1 is also expressed by subsets of cancer cells in melanoma and MCC. Moreover, this work identifies PD-1 as a novel tumor cell-intrinsic growth receptor, even in the absence of T cell immunity. PD-1 is expressed by tumorigenic cell subsets in melanoma patient samples and established human and murine cell lines that also co-express ABCB5, a marker of immunoregulatory tumor- initiating cells in melanoma. Consistently, melanoma-expressed PD-1 downmodulates T effector cell functions and increases the intratumoral frequency of tolerogenic myeloid- derived suppressor cells. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, including in mice lacking adaptive immunity. Engagement of melanoma- PD-1 by its ligand PD-L1 promotes tumor growth, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuates growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor activates mTOR signaling mediators, including ribosomal protein S6. In a proof-of-concept study, tumoral expression of phospho-S6 in pretreatment tumor biopsies correlated with clinical responses to anti-PD-1 therapy in melanoma patients. In MCC, PD-1 is similarly co-expressed by ABCB5+ cancer cell subsets in clinical tumor specimens and established human cell lines. ABCB5 renders MCC cells resistant to the standard-of-care chemotherapeutic agents, carboplatin and etoposide. Antibody-mediated ABCB5 blockade reverses chemotherapy resistance and inhibits tumor xenograft growth by enhancing chemotherapy-induced tumor cell killing. Furthermore, engagement of MCC-expressed PD-1 by its ligands, PD-L1 and PD-L2, promotes proliferation and activates MCC-intrinsic mTOR signaling. Consistently, antibody- mediated PD-1 blockade inhibits MCC tumor xenograft growth and phosphorylation of mTOR effectors in immunocompromised mice. In summary, these findings identify cancer cell-intrinsic functions of the PD-1 pathway in tumorigenesis and suggest that blocking melanoma- and MCC-expressed PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. Additionally, these results establish ABCB5 as a previously unrecognized chemoresistance mechanism in MCC.}, subject = {Melanom}, language = {en} } @phdthesis{Collenburg2018, author = {Collenburg, Lena}, title = {The Role of Ceramides and Sphingomyelinases for Dynamic Membrane Processes in T Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Previous work of our group has established a role of sphingomyelinases in the regulation of T cell responses to TCR or pathogen stimulation, and this became particularly evident at the level of actin cytoskeletal dynamics. The formation of lipid membrane microdomains is crucial for receptor clustering and signal induction, and therefore, ceramide accumulation by membrane sphingomyelin breakdown is needed for signalling- complex-assembly. Pathogen-induced overshooting of SMase activation substantially impacted the formation of membrane protrusions, with T cell spreading as well as a front/rear polarisation upon CD3/CD28 co-stimulation [103]. On the other hand, NSM activation is part of the physiological TCR signal [67], indicating that a spatiotemporally balanced NSM activation is crucial for its physiological function. It involves actin cytoskeletal reorganisation and T cell polarisation. These two functions are also of central importance in directional T cell migration and motility in tissues. This thesis aims on defining the role of NSM in compartmentalisation of the T cell membrane in polarisation and migration. Therefore, functional studies on the impact of NSM activity in these processes had to be complemented by the development of tools to study ceramide compartmentalisation in living T cells.}, subject = {Ceramides}, language = {en} } @phdthesis{TawkTaouk2018, author = {Tawk [Taouk], Caroline S.}, title = {The role of host-stress in the infection by the bacterial pathogen \(Shigella\) \(flexneri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The human-bacterial pathogen interaction is a complex process that results from a prolonged evolutionary arms race in the struggle for survival. The pathogen employs virulence strategies to achieve host colonization, and the latter counteracts using defense programs. The encounter of both organisms results in drastic physiological changes leading to stress, which is an ancient response accompanying infection. Recent evidence suggests that the stress response in the host converges with the innate immune pathways and influences the outcome of infection. However, the contribution of stress and the exact mechanism(s) of its involvement in host defense remain to be elucidated. Using the model bacterial pathogen Shigella flexneri, and comparing it with the closely related pathogen Salmonella Typhimurium, this study investigated the role of host stress in the outcome of infection. Shigella infection is characterized by a pronounced pro-inflammatory response that causes intense stress in host tissues, particularly the intestinal epithelium, which constitutes the first barrier against Shigella colonization. In this study, inflammatory stress was simulated in epithelial cells by inducing oxidative stress, hypoxia, and cytokine stimulation. Shigella infection of epithelial cells exposed to such stresses was strongly inhibited at the adhesion/binding stage. This resulted from the depletion of sphingolipidrafts in the plasma membrane by the stress-activated sphingomyelinases. Interestingly, Salmonella adhesion was not affected, by virtue of its flagellar motility, which allowed the gathering of bacteria at remaining membrane rafts. Moreover, the intracellular replication of Shigella lead to a similar sphingolipid-raft depletion in the membrane across adjacent cells inhibiting extracellular bacterial invasion. Additionally, this study shows that Shigella infection interferes with the host stress granule-formation in response to stress. Interestingly, infected cells exhibited a nuclear depletion of the global RNA-binding stress-granule associated proteins TIAR and TIA-1 and their accumulation in the cytoplasm. Overall, this work investigated different aspects of the host stress-response in the defense against bacterial infection. The findings shed light on the importance of the host stress-pathways during infection, and improve the understanding of different strategies in host-pathogen interaction.}, subject = {Shigella flexneri}, language = {en} } @phdthesis{Chowdhury2018, author = {Chowdhury, Suvagata Roy}, title = {The Role of MicroRNAs in \(Chlamydia\) Infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of trachoma related blindness and the sexually transmitted pelvic inflammatory disease. Being an obligate intracellular pathogen, C. trachomatis has an intricate dependency on the survival of the host cell. This relationship is indispensible owing to the fact that the pathogen spends a considerable fraction of its biphasic lifecycle within a cytoplasmic vacuole inside the host cell, the so-called chlamydial inclusion. The cellular apoptotic-signalling network is governed by several finely tuned regulatory cascades composed of pro- and anti-apoptotic proteins that respond to changes in the cellular homeostasis. In order to facilitate its intracellular survival, Chlamydia has been known to inhibit the premature apoptosis of the host cell via the stabilization of several host anti-apoptotic proteins such as cIAP2 and Mcl-1. While the pro- and anti-apoptotic proteins are the major regulators of the host apoptotic signalling network, a class of the small non-coding RNAs called microRNAs (miRNAs) has increasingly gained focus as a new level of regulatory control over apoptosis. This work investigates the changes in the host miRNA expression profile post Chlamydia infection using a high throughput miRNA deep sequencing approach. Several miRNAs previously associated with the modulation for apoptotic signalling were differentially expressed upon Chlamydia infection in human endothelial cells. Of the differentially regulated miRNAs, miR-30c-5p was of particular interest since it had been previously shown to target the tumor suppressor protein p53. Our lab and others have previously demonstrated that Chlamydia can downregulate the levels of p53 by promoting its proteasomal degradation. This work demonstrates that Chlamydia infection promotes p53 downregulation by increasing the abundance of miR-30c-5p and a successful infection cycle is hindered by a loss of miR-30c-5p. Over the last decade, dedicated research aimed towards a better understanding of apoptotic stimuli has greatly improved our grasp on the subject. While extrinsic stress, deprivation of survival signals and DNA damage are regarded as major proponents of apoptotic induction, a significant responsibility lies with the mitochondrial network of the cell. Mitochondrial function and dynamics are crucial to cell fate determination and dysregulation of either is decisive for cell survival and pathogenesis of several diseases. The ability of the mitochondrial network to perform its essential tasks that include ATP synthesis, anti-oxidant defense, and calcium homeostasis amongst numerous other processes critical to cellular equilibrium is tied closely to the fission and fusion of individual mitochondrial fragments. It is, thus, 8 unsurprising that mitochondrial dynamics is closely linked to apoptosis. In fact, many of the proteins involved regulation of mitochondrial dynamics are also involved in apoptotic signalling. The mitochondrial fission regulator, Drp1 has previously been shown to be transcriptionally regulated by p53 and is negatively affected by a miR- 30c mediated inhibition of p53. Our investigation reveals a significant alteration in the mitochondrial dynamics of Chlamydia infected cells affected by the loss of Drp1. We show that loss of Drp1 upon chlamydial infection is mediated by the miR-30c-5p induced depletion of p53 and results in a hyper-fused architecture of the mitochondrial network. While it is widely accepted that Chlamydia depends on the host cell metabolism for its intracellular growth and development, the role of mitochondria in an infected cell, particularly with respect to its dynamic nature, has not been thoroughly investigated. This work attempts to illustrate the dependence of Chlamydia on miR-30c-5p induced changes in the mitochondrial architecture and highlight the importance of these modulations for chlamydial growth and development.}, subject = {Chlamydienkrankheit}, language = {en} } @phdthesis{Raab2018, author = {Raab, Annette}, title = {The role of Rgs2 in animal models of affective disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying's of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function.}, subject = {Angst}, language = {en} } @phdthesis{Ries2018, author = {Ries, Mathias}, title = {The Role of the Central Bank, Banks and the Bond Market in the Paradigm of Monetary Analysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Als Folge der Finanzkrise 2008/09 sind unter einigen {\"O}konomen Zweifel an der Ad{\"a}quanz der theoretischen Modelle aufgekommen, insbesondere {\"u}ber diejenigen, die den Anspruch erheben, Finanzm{\"a}rkte und Banken zu modellieren. Aufgrund dieser Zweifel folgen einige {\"O}konomen einer neuen Str{\"o}mung, indem sie versuchen, ein neues Paradigma zu entwickeln, das auf einer geldwirtschaftlichen anstatt auf einer g{\"u}terwirtschaftlichen Theorie beruht. Der Hauptunterschied zwischen diesen beiden Sichtweisen ist, dass in einer G{\"u}terwirtschaft Geld keine essentielle Rolle spielt, wohingegen bei einer Geldwirtschaft jede Transaktion mit Geld abgewickelt wird. Grundlegend ist es deshalb wichtig zu kl{\"a}ren, ob eine Theorie, die Geld miteinschließt, zu anderen Schlussfolgerungen kommt als eine Theorie, die Geld außen vor l{\"a}sst. Ausgehend von dieser Problemstellung stelle ich im zweiten Kapitel die Schlussfolgerungen aus der g{\"u}terwirtschaftlichen Logik des Finanzsystems - modelliert durch die Loanable Funds-Theorie - der geldwirtschaftlichen Logik gegen{\"u}ber. Im Anschluss an die {\"U}berpr{\"u}fung der Schlussfolgerungen beschreibe ich drei Theorien {\"u}ber Banken. Hierbei beschreibt die sog. endogene Geldsch{\"o}fpungstheorie, in der die Zentralbanken die Kreditvergabe der Banken durch Preise steuern, unsere Welt am besten. Die endogene Geldsch{\"o}pfungstheorie ist die Basis f{\"u}r das theoretische Modell im dritten Kapitel. In diesem Modell handeln die Banken nach einem Gewinnmaximierungskalk{\"u}l, wobei die Ertr{\"a}ge aus dem Kreditgesch{\"a}ft erzielt werden und Kosten des Kreditausfallrisikos sowie Kosten durch die Refinanzierung (inklusive regulatorischer Vorschriften) enstehen. Hieraus leitet sich das Kreditangebot ab, das auf dem Kreditmarkt auf die Kreditnachfrage trifft. Die Kreditnachfrage wird durch die Kreditnehmer bestimmt, die f{\"u}r Konsumzwecke bzw. Investitionen Kredite bei Banken aufnehmen. Aus dem Zusammenspiel von Kreditangebot und Kreditnachfrage ergibt sich der gleichgewichtige Kreditzins sowie das gleichgewichtige Kreditvolumen, das Banken an Nichtbanken vergeben. Die Angebots- und Nachfrageseite, die auf dem Kreditmarkt miteinander interagieren, werden ausgehend vom theoretischen Modell empirisch f{\"u}r Deutschland im Zeitraum von 1999-2014 mit Hilfe eines Ungleichgewichtsmodells gesch{\"a}tzt, wobei sich zeigt, dass die Determinanten aus dem theoretischen Modell statistisch signifikant sind. Aufbauend auf dem theoretischen Bankenmodell wird das Modell im vierten Kapitel um den Bondmarkt erweitert. Der Bankenkredit- und der Bondmarkt sind im Gegensatz zur Beschreibung in der g{\"u}terwirtschaftlichen Analyse fundamental unterschiedlich. Zum Einen schaffen Banken Geld gem{\"a}ß der endogenen Geldsch{\"o}pfungstheorie. Sobald das Geld im Umlauf ist, k{\"o}nnen Nichtbanken dieses Geld umverteilen, indem sie es entweder f{\"u}r den G{\"u}terkauf verwenden oder l{\"a}ngerfristig ausleihen. Aufgrund des Fokusses auf das Finanzsystem in dieser Dissertation wird der Fall betrachtet, in dem Geld l{\"a}ngerfristig ausgeliehen wird. Das Motiv der Anbieter auf dem Bondmarkt, d.h. derjenigen, die Geld verleihen m{\"o}chten, ist {\"a}hnlich wie bei Banken getrieben von der Gewinnmaximierung. Ertr{\"a}ge k{\"o}nnen die Anbieter durch die Zinsen auf Bonds erwirtschaften. Kosten entstehen durch die Opportunit{\"a}tskosten der Geldhaltung als Depositen, den Kreditausfall des Schuldners sowie Kursverluste aufgrund von Zinsver{\"a}nderungen. Die geschilderte Logik basiert auf der Idee, dass Banken Geld schaffen, d.h. Originatoren von Geld sind, und das Geld auf dem Bondmarkt umverteilt wird und somit mehrfache Verwendung findet. Die beiden M{\"a}rkte sind sowohl angebots- als auch nachfrageseitig miteinander verkn{\"u}pft. Zum Einen refinanzieren sich Banken auf dem Bondmarkt, um die Fristentransformation, die durch die Kreditvergabe ensteht, zu reduzieren. Des Weiteren haben Kreditnachfrager die M{\"o}glichkeit, entweder Bankkredite oder Kredite auf dem Bondmarkt nachzufragen. Nach der theoretischen Darstellung des Finanzsystems bestehend aus dem Banken- und Bondmarkt folgt im f{\"u}nften Kapitel die Anwendung des Modells bei Quantitative Easing. Hier ist festzustellen, dass Quantitative Easing bereits bei der Ank{\"u}ndigung der Zentralbank das Verhalten der Marktakteure beeinflusst. Die vier großen Zentralbanken (Bank of Japan, Bank of England, Federal Reserve Bank und Europ{\"a}ische Zentralbank) haben aufgrund der anhaltenden Rezession und der bereits niedrigen kurzfristigen Zinsen das unkonventionelle Instrument des Aufkaufs von Anleihen angewandt. Im theoretischen Modell beeinflusst die Zentralbank bereits durch die Ank{\"u}ndigung die Akteuere auf dem Bondmarkt, sodass es zu sinkenden Risikopr{\"a}mien, da die Zentralbank als sog. 'lender of confidence' auftritt, zu (zumindest kurzfristig) sinkenden Zinserwartungen sowie insgesamt zu sinkenden langfristigen Zinsen kommt. Diese drei Hypothesen werden anhand empirischer Methoden f{\"u}r die Eurozone {\"u}berpr{\"u}ft.}, language = {en} } @phdthesis{Ziegenhals2018, author = {Ziegenhals, Thomas}, title = {The role of the miR-26 family in neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For the differentiation of a embryonic stem cells (ESCs) to neuronal cells (NCs) a complex and coordinated gene regulation program is needed. One important control element for neuronal differentiation is the repressor element 1 silencing transcription factor (REST) complex, which represses neuronal gene expression in non-neuronal cells. Crucial effector proteins of the REST complex are small phosphatases such as the CTDSPs (C-terminal domain small phosphatases) that regulate polymerase II activity by dephosphorylating the C-terminal domain of the polymerase, thereby repressing target genes. The stepwise inactivation of REST, including the CTDSPs, leads to the induction of a neuron-specific gene program, which ultimately induces the formation of neurons. The spatio-temporal control of REST and its effector components is therefore a crucial step for neurogenesis. In zebrafish it was shown that the REST-associated CTDSP2 is negatively regulated by the micro RNA (miR) -26b. Interestingly, the miR-26b is encoded in an intron of the primary transcript of CTDSP2. This gives the fundament of an intrinsic regulatory negative feedback loop, which is essential for the proceeding of neurogenesis. This feedback loop is active during neurogenesis, but inactive in non-neuronal cells. The reason for this is that the maturation of the precursor miR (pre-miR) to the mature miR-26 is arrested in non neuronal cells, but not in neurons. As only mature miRs are actively repressing genes, the regulation of miR-26 processing is an essential step in neurogenesis. In this study, the molecular basis of miR-26 processing regulation in the context of neurogenesis was addressed. The mature miR is processed from two larger precursors: First the primary transcript is cleaved by the enzyme DROSHA in the nucleus to form the pre-miR. The pre-miR is exported from the nucleus and processed further through the enzyme DICER to yield the mature miR. The mature miR can regulate gene expression in association with the RNA-induced silencing complex (RISC). Multiple different scenarios in which miR processing was regulated were proposed and experimentally tested. Microinjection studies using Xenopus leavis oocytes showed that slowdown or blockage of the nucleo-cytoplasmic transport are not the reason for delayed pre-miR-26 processing. Moreover, in vitro and in vivo miR-processing assays showed that maturation is most likely regulated through a in trans acting factor, which blocks processing in non neuronal cells. Through RNA affinity chromatographic assays using zebrafish and murine lysates I was able to isolate and identify proteins that interact specifically with pre-miR-26 and could by this influence its biogenesis. Potential candidates are FMRP/FXR1/2, ZNF346 and Eral1, whose functional characterisation in the context of miR-biogenesis could now be addressed. The second part of my thesis was executed in close colaboration with the laboratory of Prof. Albrecht M{\"u}ller. The principal question was addressed how miR-26 influences neuronal gene expression and which genes are primarily affected. This research question could be addressed by using a cell culture model system, which mimics ex vivo the differentiation of ESCs to NCs via neuronal progenitor. For the functional analysis of miR-26 knock out cell lines were generated by the CRISPR/Cas9 technology. miR-26 deficient ESC keep their pluripotent state and are able to develop NPC, but show major impairment in differentiating to NCs. Through RNA deep sequencing the miR-26 induced transcriptome differences could be analysed. On the level of mRNAs it could be shown, that the expression of neuronal gene is downregulated in miR-26 deficient NCs. Interestingly, the deletion of miR-26 leads to selectively decreased levels of miRs, which on one hand regulate the REST complex and on the other hand are under transcriptional control by REST themself. This data and the discovery that induction of miR-26 leads to enrichment of other REST regulating miRs indicates that miR-26 initiates neurogenesis through stepwise inactivation of the REST complex.}, subject = {miRNS}, language = {en} } @article{AndratschkeAlheidAllgaeueretal.2018, author = {Andratschke, N. and Alheid, H. and Allg{\"a}uer, M. and Becker, G. and Blanck, O. and Boda-Heggemann, J. and Brunner, T. and Duma, M. and Gerum, S. and Guckenberger, M. and Hildebrandt, G. and Klement, R. J. and Lewitzki, V. and Ostheimer, C. and Papachristofilou, A. and Petersen, C. and Schneider, T. and Semrau, R. and Wachter, S. and Habermehl, D.}, title = {The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases}, series = {BMC Cancer}, volume = {18}, journal = {BMC Cancer}, doi = {10.1186/s12885-018-4191-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221116}, year = {2018}, abstract = {Background The intent of this pooled analysis as part of the German society for radiation oncology (DEGRO) stereotactic body radiotherapy (SBRT) initiative was to analyze the patterns of care of SBRT for liver oligometastases and to derive factors influencing treated metastases control and overall survival in a large patient cohort. Methods From 17 German and Swiss centers, data on all patients treated for liver oligometastases with SBRT since its introduction in 1997 has been collected and entered into a centralized database. In addition to patient and tumor characteristics, data on immobilization, image guidance and motion management as well as dose prescription and fractionation has been gathered. Besides dose response and survival statistics, time trends of the aforementioned variables have been investigated. Results In total, 474 patients with 623 liver oligometastases (median 1 lesion/patient; range 1-4) have been collected from 1997 until 2015. Predominant histologies were colorectal cancer (n = 213 pts.; 300 lesions) and breast cancer (n = 57; 81 lesions). All centers employed an SBRT specific setup. Initially, stereotactic coordinates and CT simulation were used for treatment set-up (55\%), but eventually were replaced by CBCT guidance (28\%) or more recently robotic tracking (17\%). High variance in fraction (fx) number (median 1 fx; range 1-13) and dose per fraction (median: 18.5 Gy; range 3-37.5 Gy) was observed, although median BED remained consistently high after an initial learning curve. Median follow-up time was 15 months; median overall survival after SBRT was 24 months. One- and 2-year treated metastases control rate of treated lesions was 77\% and 64\%; if maximum isocenter biological equivalent dose (BED) was greater than 150 Gy EQD2Gy, it increased to 83\% and 70\%, respectively. Besides radiation dose colorectal and breast histology and motion management methods were associated with improved treated metastases control. Conclusion After an initial learning curve with regards to total cumulative doses, consistently high biologically effective doses have been employed translating into high local tumor control at 1 and 2 years. The true impact of histology and motion management method on treated metastases control deserve deeper analysis. Overall survival is mainly influenced by histology and metastatic tumor burden.}, language = {en} } @article{JarickBertscheStahletal.2018, author = {Jarick, Marcel and Bertsche, Ute and Stahl, Mark and Schultz, Daniel and Methling, Karen and Lalk, Michael and Stigloher, Christian and Steger, Mirco and Schlosser, Andreas and Ohlsen, Knut}, title = {The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {13693}, doi = {10.1038/s41598-018-32109-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177333}, year = {2018}, abstract = {The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.}, language = {en} } @phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @article{WernerWeichKircheretal.2018, author = {Werner, Rudolf A. and Weich, Alexander and Kircher, Malte and Solnes, Lilja B. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven and Lapa, Constantin}, title = {The theranostic promise for neuroendocrine tumors in the late 2010s - Where do we stand, where do we go?}, series = {Theranostics}, volume = {8}, journal = {Theranostics}, number = {22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170264}, pages = {6088-6100}, year = {2018}, abstract = {More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{BaurOttoStegeretal.2018, author = {Baur, Johannes and Otto, Christoph and Steger, Ulrich and Klein-Hessling, Stefan and Muhammad, Khalid and Pusch, Tobias and Murti, Krisna and Wismer, Rhoda and Germer, Christoph-Thomas and Klein, Ingo and M{\"u}ller, Nora and Serfling, Edgar and Avots, Andris}, title = {The transcription factor NFaTc1 supports the rejection of heterotopic heart allografts}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2018.01338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221530}, year = {2018}, abstract = {The immune suppressants cyclosporin A (CsA) and tacrolimus (FK506) are used worldwide in transplantation medicine to suppress graft rejection. Both CsA and FK506 inhibit the phosphatase calcineurin (CN) whose activity controls the immune receptor-mediated activation of lymphocytes. Downstream targets of CN in lymphocytes are the nuclear factors of activated T cells (NFATs). We show here that the activity of NFATc1, the most prominent NFAT factor in activated lymphocytes supports the acute rejection of heterotopic heart allografts. While ablation of NFATc1 in T cells prevented graft rejection, ectopic expression of inducible NFATc1/αA isoform led to rejection of heart allografts in recipient mice. Acceptance of transplanted hearts in mice bearing NFATc1-deficient T cells was accompanied by a reduction in number and cytotoxicity of graft infiltrating cells. In CD8\(^+\) T cells, NFATc1 controls numerous intracellular signaling pathways that lead to the metabolic switch to aerobic glycolysis and the expression of numerous lymphokines, chemokines, and their receptors, including Cxcr3 that supports the rejection of allogeneic heart transplants. These findings favors NFATc1 as a molecular target for the development of new strategies to control the cytotoxicity of T cells upon organ transplantation.}, language = {en} } @phdthesis{Wohlfart2018, author = {Wohlfart, Christian}, title = {The Yellow River Basin in Transition - Multi-faceted Land Cover Change Analysis in the Yellow River Basin in the Context of Global Change Using Multi-sensor Remote Sensing Imagery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship has intensified further as the basin plays a vital role for China's continued economic development. It is one of the most densely-populated, fastest growing, and most dynamic regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the basin has witnessed a spectacular economic boom during the last decades and can be considered as an exemplary blueprint region for contemporary dynamic Global Change processes occurring throughout the country, which is currently transitioning from an agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow River social-ecological systems, where complex challenges arise threatening a long-term sustainable development. Consistent and continuous remote sensing-based monitoring of recent and past land cover and land use change is a fundamental requirement to mitigate the adverse impacts of Global Change processes. Nowadays, technical advancement and the multitude of available satellite sensors, in combination with the opening of data archives, allow the creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the prevailing dynamics and underlying factors influencing the current processes, detailed regional specific land cover data and change information are surprisingly absent for this region. In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii), the most dominant processes related to mining, agriculture, forest, and urban dynamics are determined on finer spatial and temporal scales. The complex and manifold problems and challenges that result from long-term abuse of the water and land resources in the basin have been underpinned by policy choices, cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow River. Whereas flooding is therefore largely now under control, new environmental and social problems have evolved, including soil and water pollution, ecological degradation, biodiversity decline, and food security, all being further aggravated by anthropogenic climate change. To resolve the contemporary and complex challenges, many individual environmental laws and regulations have been enacted by various Chinese ministries. However, these policies often pursue different, often contradictory goals, are too general to tackle specific problems and are usually implemented by a strong top-down approach. Recently, more flexible economic and market-based incentives (pricing, tradable permits, investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments. One way towards a more holistic and integrated river basin management could be the establishment of a common platform (e.g. a Geographical Information System) for data handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures are coalesced, on which sustainable decision-making could be based. So far, the collected data is hardly accessible, fragmented, inconsistent, or outdated. The first step to address the absence and lack of consistent and spatially up-to-date information for the entire basin capturing the heterogeneous landscape conditions was taken up in this thesis. Land cover characteristics and dynamics were derived from the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m. To minimize the inherent influence of atmospheric and geometric interferences found in raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed the time series and substantially reduced noise. Based on the smoothed time series data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random forest (RF) classifiers. High quality reference data sets were derived from very high resolution imagery for each year independently of which 70 \% trained the RF models. The accuracy assessments for all regionally specific defined thematic classes were based on the remaining 30 \% reference data split and yielded overall accuracies of 87 \% and 84 \% for 2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products (YRB LC) depict the detail spatial extent and distribution of the current land cover status and dynamics. The novel products overall differentiate overall 18 land cover and use classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes, mosaic classes, non-vegetated, and artificial classes, which are not presented in previous land cover studies so far. Building on this, an extended multi-faceted land cover analysis on the most prominent land cover change types at finer spatial and temporal scales provides a better and more detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products about mining, agriculture, forest, and urban areas were examined from long-trem Landsat satellite time series monitored at annual scales to capture the rapid rate of change in four selected focus regions. All archived Landsat images between 2000 and 2015 were used to derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a mono-temporal reference stable-pixels data set to keep manual sampling requirements to a minimum level. Derived results gained high accuracies ranging from 88 \% to 98 \%. Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are identified as most prominent drivers of land cover change, whereas agricultural land remained stable, only showing local small-scale dynamics. Mining operations started in 2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine meadows and wetlands. In this thesis, a novel and unique regional specific view of current and past land cover characteristics in a complex and heterogeneous landscape was presented by using a multi-source remote sensing approach. The delineated products hold great potential for various model and management applications. They could serve as valuable components for effective and sustainable land and water management to adapt and mitigate the predicted consequences of Global Change processes.}, subject = {Fernerkundung}, language = {en} } @phdthesis{Hofmann2018, author = {Hofmann, Lukas}, title = {The α-galactosidase A deficient mouse as a model for Fabry disease and the effect of Gb3 depositions on peripheral nociceptive ion channel function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A deficiency. We studied α-galactosidase A knockout mice (GLA KO) as a model for sensory disturbance and pain in FD. Pain associated behavior of young (3 months) and old (≥18 months) GLA KO mice and wildtype (WT) littermates in an inflammatory and a neuropathic pain model was investigated. Furthermore, affective and cognitive behavior was assessed in the na{\"i}ve state and in an inflammatory pain model. Gene and protein expression of pain associated ion channels and Gb3 accumulation in dorsal root ganglion (DRG) neurons was determined. We also performed patch clamp analysis on cultivated DRG neurons and human embryonic kidney 293 (HEK) cells expressing voltage-gated-sodium channel 1.7 (Nav1.7) as an in vitro model of FD. Intracellular Gb3 deposits were modulated using shRNA silencing of α-galactosidase A. After intraplantar injection of complete Freund`s adjuvant (CFA) and chronic constriction injury (CCI) of the right sciatic nerve, old GLA KO mice did not develop heat and mechanical hypersensitivity in contrast to young GLA KO and old WT mice. Additionally, we found no relevant differences between genotypes and age-groups in affective and cognitive behavior in the na{\"i}ve state and after CFA injection. Gene and protein expression analysis provided no explanation for the observed sensory impairment. However, cultured DRG neurons of old GLA KO mice revealed a marked decrease of sodium and Ih-currents compared to young GLA KO and old WT mice. DRG neurons of old GLA KO mice displayed substantial intracellular accumulation of Gb3 compared to young GLA KO and old WT mice. Similar to cultured neurons, sodium currents were also decreased in HEK cells treated with shRNA and consecutively increased intracellular Gb3 deposits compared to the control condition, but could be rescued by treatment with agalsidase-alpha. Our study unveils that, similar to patients with FD, GLA KO mice display age-dependent sensory deficits. However, contrary to patients, GLA KO mice are also protected from hypersensitivity induced by inflammation and nerve lesion due to Gb3-dependent and reversible reduction of neuronal sodium- and Ih-currents. Our data provide evidence for direct Gb3-dependent ion channel impairment in sensory DRG neurons as a potential contributor to sensory dysfunction and pain in FD.}, subject = {Fabry-Krankheit}, language = {en} } @article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @phdthesis{Feineis2018, author = {Feineis, Susanne}, title = {Thioether-poly(glycidol) as multifunctional coating system for gold nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The aim of this thesis was the development of a multifunctional coating system for AuNPs based on thioether polymers, providing both excellent colloidal stability and a variable possibility to introduce functionalities for biological applications. First, two thioether-polymer systems were synthesised as a systematic investigation into colloidal stabilisation efficacy. Besides commonly used monovalent poly(ethylene glycol) (PEG-SR), its structural analogue linear poly(glycidol) (PG-SR) bearing multiple statistically distributed thioether moieties along the backbone was synthesised. Additionally, respective thiol analogues (PEG-SH and PG-SH) were produced and applied as reference. Successive modification of varyingly large AuNPs with aforementioned thiol- and thioether-polymers was performed via ligand exchange reaction on citrate stabilised AuNPs. An increased stabilisation efficacy of both thioether-polymers against biological and physiological conditions, as well as against freeze-drying compared to thiol analogues was determined. Based on the excellent colloidal stabilisation efficacy and multi-functionalisability of thioether-PG, a plethora of functional groups, such as charged groups, hydrophilic/hydrophobic chains, as well as bio-active moieties namely diazirine and biotin was introduced to the AuNP surface. Moreover, the generic and covalent binding of diazirine-modified PG-SR with biomolecules including peptides and proteins was thoroughly demonstrated. Lastly, diverse applicability and bioactivity of aforementioned modified particles in various studies was displayed, once more verifying the introduction of functionalities. On the one hand the electrostatic interaction of charged AuNPs with hydrogels based on hyaluronic acid was applied to tune the release kinetics of particles from three-dimensional scaffolds. On the other hand the strong complexation of siRNA onto two positively charged AuNPs was proven. The amount of siRNA payload was tuneable by varying the surface charge, ionic strength of the surrounding medium and the N/P ratio. Moreover, the biological activity and selectivity of the biotin-streptavidin conjugation was verified with respectively functionalised particles in controlled agglomeration test and in laser-triggered cell elimination experiments. In the latter, streptavidin-functionalised AuNPs resulted in excellent depletion of biotinylated cells whereas unfunctionalised control particles failed, excluding unspecific binding of these particles to the cell surface.}, subject = {Nanopartikel}, language = {en} } @article{RiquelmeHaarerKammleretal.2018, author = {Riquelme, Paloma and Haarer, Jan and Kammler, Anja and Walter, Lisa and Tomiuk, Stefan and Ahrens, Norbert and Wege, Anja K. and Goecze, Ivan and Zecher, Daniel and Banas, Bernhard and Spang, Rainer and F{\"a}ndrich, Fred and Lutz, Manfred B. and Sawitzki, Birgit and Schlitt, Hans J. and Ochando, Jordi and Geissler, Edward K. and Hutchinson, James A.}, title = {TIGIT\(^+\) iTregs elicited by human regulatory macrophages control T cell immunity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {9}, doi = {10.1038/s41467-018-05167-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226321}, pages = {2858, 1-18}, year = {2018}, abstract = {Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs.}, language = {en} } @phdthesis{Nuernberger2018, author = {N{\"u}rnberger, Fabian}, title = {Timing of colony phenology and foraging activity in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment.}, subject = {Biene}, language = {en} } @phdthesis{SchenkneeWolf2018, author = {Schenk [n{\´e}e Wolf], Mariela}, title = {Timing of wild bee emergence: mechanisms and fitness consequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161565}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in W{\"u}rzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately.}, subject = {wild bees}, language = {en} } @article{KlenkeQuastPrelogetal.2018, author = {Klenke, Daniela and Quast, Anja and Prelog, Martina and Holl-Wieden, Annette and Riekert, Maximilian and Stellzig-Eisenhauer, Angelika and Meyer-Marcotty, Philipp}, title = {TMJ pathomorphology in patients with JIA-radiographic parameters for early diagnosis-}, series = {Head \& Face Medicine}, volume = {14}, journal = {Head \& Face Medicine}, doi = {10.1186/s13005-018-0173-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325882}, year = {2018}, abstract = {Background Juvenile idiopathic arthritis (JIA) is often accompanied by pathomorphological changes to the temporomandibular joint (TMJ). By analyzing orthodontical orthopantomograms of JIA patients the aims of the study were a) classification of condyle changes, b) quantification of bony asymmetries of condylar destruction and c) detection of relationships between disease duration and TMJ-involvement. Patients/Methods 46 caucasian JIA-patients (28 female; 18 male; < 16.0 years) were enrolled, each joint (n = 92) was morphologically assessed by means of orthopantomogram, quantitatively analysed and compared with duration of general disease. Condyle morphology was assessed using the Billiau scale for severity of destruction [1]. The quantitative analysis was based on ratios of condyle, ramus and mandible height. Results Patients were divided into groups (Group I - slightly affected, n = 36; Billiau severity 0-2; condyle findings: X-ray normal, condyle erosions, condylar flattening; Group II - severely affected, N = 10; Billiau severity 3-4; condyle findings: condylar flattenings and erosions, unilateral/bilateral complete loss of condyles), based on morphological analysis of condylar destruction. Duration of disease was significantly longer in Group II (8.9 ± 5.2 years) than in Group I (4.6 ± 4.7 years). Asymmetries of condyle, ramus and mandible height, quantitatively analysed by contralateral comparison, were significantly more marked in patients of Group II than of Group I. Conclusions Orthopantomogram imaging can be used in orthodontics clinical routine to detect TMJ-pathologies and is an important reference for monitoring progression of JIA. Classification into severe and slightly affected TMJ is possible by analysis of condylar pathomorphology. An association between degree of destruction, extent of lower jaw asymmetry and disease duration is suggested by the results.}, language = {en} } @article{VendelovaAshourBlanketal.2018, author = {Vendelova, Emilia and Ashour, Diyaaeldin and Blank, Patrick and Erhard, Florian and Saliba, Antoine-Emmanuel and Kalinke, Ulrich and Lutz, Manfred B.}, title = {Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {333}, doi = {10.3389/fimmu.2018.00333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175636}, year = {2018}, abstract = {Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.}, language = {en} } @techreport{Greubel2018, type = {Working Paper}, author = {Greubel, Johannes}, title = {Towards a Profound European Asylum System? On EU Governance during the Refugee Crisis}, edition = {1. Auflage}, issn = {2625-6193}, doi = {10.25972/OPUS-16879}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168797}, pages = {43}, year = {2018}, abstract = {The refugee crisis has developed as one of the major challenges for EU governance in recent years. From 2013 onwards, the crisis determined the political agenda and public discourse within European politics. During that time, the numbers of asylum seekers reaching Europe increased dramatically, with more than one million people applying for asylum at the crisis peak in 2015. This paper deals with the efforts taken by the EU and its member states to mitigate and overcome the refugee crisis. How exactly has the EU reacted to the refugee crisis and how and to what extend have the EU and its governance changed throughout the crisis? These research questions are approached through a reconstructive analysis of the whole period of crisis. This approach provides for a comprehensive examination of the refugee crisis that includes all issues, measures and processes of the EU's policy reaction at the same time. It will be argued that due to severe shortcomings of the Dublin regulation and the Common European Asylum System, a crisis in the EU's refugee policy was already predestined. This was the case from 2013 onwards. The EU approached the crisis in three stages - neglect and non-solidarity leading to unilateral approaches by affected states, supranational short-term emergency measures during the peak of crisis and enhanced cooperation with third countries, especially with Turkey, the Western Balkans states and African states - until the crisis lost traction in 2017. Yet, the asylum system's shortcomings are still not eliminated as the lasting measures of the EU's crisis management between 2013 and 2018 mainly focused on border security and externalisation. EU governance changed towards more intergovernmental, informal and regional action. Further, the crisis led to serious rows between member states, leading to the fragmentation of the EU into two blocs. With decreasing numbers of asylum seeker in the last few years, what remains is an incomplete asylum system and a political crisis among member states.}, subject = {Europ{\"a}ische Union}, language = {en} } @phdthesis{Mao2018, author = {Mao, Lujia}, title = {Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group ('OTi'). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol \% [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32\%-95\% yields. With 10 mol \% [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53\%-89\% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72\%-84\% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72\%-89\% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95\% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92\% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50\%-83\% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44\%-83\% yields. The (E)-2-boryl allylboronates were synthesized in 54\%-92\% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2'-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions}, subject = {{\"U}bergangsmetall}, language = {en} } @article{HoernesFaserlJuenetal.2018, author = {Hoernes, Thomas Philipp and Faserl, Klaus and Juen, Michael Andreas and Kremser, Johannes and Gasser, Catherina and Fuchs, Elisabeth and Shi, Xinying and Siewert, Aaron and Lindner, Herbert and Kreutz, Christoph and Micura, Ronald and Joseph, Simpson and H{\"o}bartner, Claudia and Westhof, Eric and H{\"u}ttenhofer, Alexander and Erlacher, Matthias David}, title = {Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07321-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321067}, year = {2018}, abstract = {The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.}, language = {en} } @phdthesis{Grauer2018, author = {Grauer, Stefan}, title = {Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds}, publisher = {Verlag Dr. Hut GmbH}, isbn = {978-3-8439-3481-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics.}, subject = {Topologischer Isolator}, language = {en} } @article{RubioCosialsSchulzLambertsenetal.2018, author = {Rubio-Cosials, Anna and Schulz, Eike C. and Lambertsen, Lotte and Smyshlyaev, Georgy and Rojas-Cordova, Carlos and Forslund, Kristoffer and Karaca, Ezgi and Bebel, Aleksandra and Bork, Peer and Barabas, Orsolya}, title = {Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance}, series = {Cell}, volume = {173}, journal = {Cell}, number = {1}, doi = {10.1016/j.cell.2018.02.032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227085}, pages = {e20, 208-220}, year = {2018}, abstract = {Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.}, language = {en} }