@unpublished{PetersenLindnerMitric2018, author = {Petersen, Jens and Lindner, Joachim O. and Mitric, Roland}, title = {Ultrafast Photodynamics of Glucose}, series = {Journal of Physical Chemistry B}, journal = {Journal of Physical Chemistry B}, doi = {10.1021/acs.jpcb.7b08602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159155}, year = {2018}, abstract = {We have investigated the photodynamics of \(\beta\)-D-glucose employing our field-induced surface hopping method (FISH), which allows us to simulate the coupled electron-nuclear dynamics, including explicitly nonadiabatic effects and light-induced excitation. Our results reveal that from the initially populated S\(_{1}\) and S\(_{2}\) states, glucose returns nonradiatively to the ground state within about 200 fs. This takes place mainly via conical intersections (CIs) whose geometries in most cases involve the elongation of a single O-H bond, while in some instances ring-opening due to dissociation of a C-O bond is observed. Experimentally, excitation to a distinct excited electronic state is improbable due to the presence of a dense manifold of states bearing similar oscillator strengths. Our FISH simulations explicitly including a UV laser pulse of 6.43 eV photon energy reveals that after initial excitation the population is almost equally spread over several close-lying electronic states. This is followed by a fast nonradiative decay on the time scale of 100-200 fs, with the final return to the ground state proceeding via the S\(_{1}\) state through the same types of CIs as observed in the field-free simulations.}, language = {en} }