@article{WalzMuehlbergerPauli2016, author = {Walz, Nora and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {A human open field test reveals thigmotaxis related to agoraphobic fear}, series = {Biological Psychiatry}, volume = {80}, journal = {Biological Psychiatry}, number = {5}, doi = {10.1016/j.biopsych.2015.12.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187607}, pages = {390-397}, year = {2016}, abstract = {BACKGROUND: Thigmotaxis refers to a specific behavior of animals (i.e., to stay close to walls when exploring an open space). Such behavior can be assessed with the open field test (OFT), which is a well-established indicator of animal fear. The detection of similar open field behavior in humans may verify the translational validity of this paradigm. Enhanced thigmotaxis related to anxiety may suggest the relevance of such behavior for anxiety disorders, especially agoraphobia. METHODS: A global positioning system was used to analyze the behavior of 16 patients with agoraphobia and 18 healthy individuals with a risk for agoraphobia (i.e., high anxiety sensitivity) during a human OFT and compare it with appropriate control groups (n = 16 and n = 19). We also tracked 17 patients with agoraphobia and 17 control participants during a city walk that involved walking through an open market square. RESULTS: Our human OFT triggered thigmotaxis in participants; patients with agoraphobia and participants with high anxiety sensitivity exhibited enhanced thigmotaxis. This behavior was evident in increased movement lengths along the wall of the natural open field and fewer entries into the center of the field despite normal movement speed and length. Furthermore, participants avoided passing through the market square during the city walk, indicating again that thigmotaxis is related to agoraphobia. CONCLUSIONS: This study is the first to our knowledge to verify the translational validity of the OFT and to reveal that thigmotaxis, an evolutionarily adaptive behavior shown by most species, is related to agoraphobia, a pathologic fear of open spaces, and anxiety sensitivity, a risk factor for agoraphobia.}, language = {en} } @article{ReichertsGerdesPaulietal.2016, author = {Reicherts, Philipp and Gerdes, Antje B. M. and Pauli, Paul and Wieser, Matthias J.}, title = {Psychological placebo and nocebo effects on pain rely on expectation and previous experience}, series = {Journal of Pain}, volume = {17}, journal = {Journal of Pain}, number = {2}, doi = {10.1016/j.jpain.2015.10.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190962}, pages = {203-214}, year = {2016}, abstract = {Expectation and previous experience are both well established key mediators of placebo and nocebo effects. However, the investigation of their respective contribution to placebo and nocebo responses is rather difficult because most placebo and nocebo manipulations are contaminated by pre-existing treatment expectancies resulting from a learning history of previous medical interventions. To circumvent any resemblance to classical treatments, a purely psychological placebonocebo manipulation was established, namely, the "visual stripe pattern induced modulation of pain." To this end, experience and expectation regarding the effects of different visual cues (stripe patterns) on pain were varied across 3 different groups, with either only placebo instruction (expectation), placebo conditioning (experience), or both (expectation + experience) applied. Only the combined manipulation (expectation + experience) revealed significant behavioral and physiological placebo nocebo effects on pain. Two subsequent experiments, which, in addition to placebo and nocebo cues, included a neutral control condition further showed that especially nocebo responses were more easily induced by this psychological placebo and nocebo manipulation. The results emphasize the great effect of psychological processes on placebo and nocebo effects. Particularly, nocebo effects should be addressed more thoroughly and carefully considered in clinical practice to prevent the accidental induction of side effects.}, language = {en} } @article{SchieleReinhardReifetal.2016, author = {Schiele, Miriam A. and Reinhard, Julia and Reif, Andreas and Domschke, Katharina and Romanos, Marcel and Deckert, J{\"u}rgen and Pauli, Paul}, title = {Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults}, series = {Developmental Psychobiology}, volume = {58}, journal = {Developmental Psychobiology}, number = {4}, doi = {10.1002/dev.21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189488}, pages = {471-481}, year = {2016}, abstract = {Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues.}, language = {en} } @article{KuhnScharfenortSchuemannetal.2016, author = {Kuhn, Manuel and Scharfenort, Robert and Sch{\"u}mann, Dirk and Schiele, Miriam A. and M{\"u}nsterk{\"o}tter, Anna L. and Deckert, J{\"u}rgen and Domschke, Katharina and Haaker, Jan and Kalisch, Raffael and Pauli, Paul and Reif, Andreas and Romanos, Marcel and Zwanzger, Peter and Lonsdorf, Tina B.}, title = {Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament}, series = {Social Cognitive and Affective Neuroscience}, volume = {11}, journal = {Social Cognitive and Affective Neuroscience}, number = {4}, doi = {10.1093/scan/nsv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189645}, pages = {537-547}, year = {2016}, abstract = {Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences.}, language = {en} }