@incollection{Schmitz2017, author = {Schmitz, Barbara}, title = {Aspects of Worship in the Letter of Aristeas}, series = {Various Aspects of Worship in Deuterocanonical and Cognate Literature}, volume = {2016/2017}, booktitle = {Various Aspects of Worship in Deuterocanonical and Cognate Literature}, doi = {10.1515/9783110467406-020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205150}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Although the Letter of Aristeas mentions the translation of the Jewish nomos into Greek, it is striking that worship is not a fundamental theme of this writing. Nevertheless, six passages present acts of worship, which recount worship from different perspectives: Aristeas prays to God and explains his "Greek" idea of worship (Let. Aris. 17), whereas in Let. Aris. 132-140 the high priest explains the Jewish concept of worship. Sacrifices and prayers at the temple in Jerusalem for the Ptolemaic royal house are told in Let. Aris. 45, while at the Ptolemaic court in Alexandria one of the Jewish scholars prays at the beginning of the symposium (Let. Aris. 184-186). Then the daily prayer of the Jewish scholars are recounted in Let. Aris. 305-306 and finally the Ptolemaic king performs a proskynesis before the law at the end of the letter and thereby accepts the translation (Let. Aris. 317).}, language = {en} } @article{KaluzaWallaceKelleretal.2017, author = {Kaluza, Benjamin F. and Wallace, Helen and Keller, Alexander and Heard, Tim A. and Jeffers, Bradley and Drescher, Nora and Bl{\"u}thgen, Nico and Leonhardt, Sara D.}, title = {Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments}, series = {Ecosphere}, volume = {8}, journal = {Ecosphere}, number = {3}, doi = {10.1002/ecs2.1758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171155}, pages = {e01758}, year = {2017}, abstract = {Numerous studies revealed a positive relationship between biodiversity and ecosystem functioning, suggesting that biodiverse environments may not only enhance ecosystem processes, but also benefit individual ecosystem members by, for example, providing a higher diversity of resources. Whether and how the number of available resources affects resource collection and subsequently consumers (e.g., through impacting functions associated with resources) have, however, been little investigated, although a better understanding of this relationship may help explain why the abundance and richness of many animal species typically decline with decreasing plant (resource) diversity. Using a social bee species as model (Tetragonula carbonaria), we investigated how plant species richness—recorded for study sites located in different habitats—and associated resource abundance affected the diversity and functionality (here defined as nutritional content and antimicrobial activity) of resources (i.e., pollen, nectar, and resin) collected by a generalist herbivorous consumer. The diversity of both pollen and resin collected strongly increased with increasing plant/tree species richness, while resource abundance was only positively correlated with resin diversity. These findings suggest that bees maximize resource diversity intake in (resource) diverse habitats. Collecting more diverse resources did, however, not increase their functionality, which appeared to be primarily driven by the surrounding (plant) source community in our study. In generalist herbivores, maximizing resource diversity intake may therefore primarily secure collection of sufficient amounts of resources across the entire foraging season, but it also ensures that the allocated resources meet all functional needs. Decreasing available resource diversity may thus impact consumers primarily by reduced resource abundance, but also by reduced resource functionality, particularly when resources of high functionality (e.g., from specific plant species) become scarce.}, language = {en} } @article{GiampaoloWojcikSerflingetal.2017, author = {Giampaolo, Sabrina and W{\´o}jcik, Gabriela and Serfling, Edgar and Patra, Amiya K.}, title = {Interleukin-2-regulatory T cell axis critically regulates maintenance of hematopoietic stem cells}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, number = {18}, doi = {10.18632/oncotarget.16377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170947}, pages = {29625-29642}, year = {2017}, abstract = {The role of IL-2 in HSC maintenance is unknown. Here we show that Il2\(^{-/-}\) mice develop severe anomalies in HSC maintenance leading to defective hematopoiesis. Whereas, lack of IL-2 signaling was detrimental for lympho- and erythropoiesis, myelopoiesis was enhanced in Il2\(^{-/-}\) mice. Investigation of the underlying mechanisms of dysregulated hematopoiesis in Il2\(^{-/-}\) mice shows that the IL-2-T\(_{reg}\) cell axis is indispensable for HSC maintenance and normal hematopoiesis. Lack of T\(_{reg}\) activity resulted in increased IFN-γ production by activated T cells and an expansion of the HSCs in the bone marrow (BM). Though, restoring T\(_{reg}\) population successfully rescued HSC maintenance in Il2\(^{-/-}\) mice, preventing IFN-γ activity could do the same even in the absence of T\(_{reg}\) cells. Our study suggests that equilibrium in IL-2 and IFN-γ activity is critical for steady state hematopoiesis, and in clinical conditions of BM failure, IL-2 or anti-IFN-γ treatment might help to restore hematopoiesis.}, language = {en} } @article{DegenHovestadtMitesseretal.2017, author = {Degen, Tobias and Hovestadt, Thomas and Mitesser, Oliver and H{\"o}lker, Franz}, title = {Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses}, series = {Ecosphere}, volume = {8}, journal = {Ecosphere}, number = {5}, doi = {10.1002/ecs2.1820}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170953}, pages = {e01820}, year = {2017}, abstract = {Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre-mating mortality has a non-linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces female-male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further, if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long-term efficiency of pest-control measures.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} } @article{KollmannsbergerKerschnitzkiReppetal.2017, author = {Kollmannsberger, Philip and Kerschnitzki, Michael and Repp, Felix and Wagermaier, Wolfgang and Weinkamer, Richard and Fratzl, Peter}, title = {The small world of osteocytes: connectomics of the lacuno-canalicular network in bone}, series = {New Journal of Physics}, volume = {19}, journal = {New Journal of Physics}, number = {073019}, doi = {10.1088/1367-2630/aa764b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170662}, year = {2017}, abstract = {Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.}, language = {en} } @article{MemmelSisarioZoelleretal.2017, author = {Memmel, Simon and Sisario, Dmitri and Z{\"o}ller, Caren and Fiedler, Vanessa and Katzer, Astrid and Heiden, Robin and Becker, Nicholas and Eing, Lorenz and Ferreira, F{\´a}bio L.R. and Zimmermann, Heiko and Sauer, Markus and Flentje, Michael and Sukhorukov, Vladimir L. and Djuzenova, Cholpon S.}, title = {Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, number = {28}, doi = {10.18632/oncotarget.16847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170719}, pages = {45298-45310}, year = {2017}, abstract = {High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.}, language = {en} } @article{EffenbergerBommertKunzetal.2017, author = {Effenberger, Madlen and Bommert, Kathryn S. and Kunz, Viktoria and Kruk, Jessica and Leich, Ellen and Rudelius, Martina and Bargou, Ralf and Bommert, Kurt}, title = {Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, number = {49}, doi = {10.18632/oncotarget.20691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170168}, pages = {85858-85867}, year = {2017}, abstract = {Multiple Myeloma (MM) is an incurable hematological malignancy affecting millions of people worldwide. As in all tumor cells both glucose and more recently glutamine have been identified as important for MM cellular metabolism, however there is some dispute as to the role of glutamine in MM cell survival. Here we show that the small molecule inhibitor compound 968 effectively inhibits glutaminase and that this inhibition induces apoptosis in both human multiple myeloma cell lines (HMCLs) and primary patient material. The HMCL U266 which does not express MYC was insensitive to both glutamine removal and compound 968, but ectopic expression of MYC imparted sensitivity. Finally, we show that glutamine depletion is reflected by rapid loss of MYC protein which is independent of MYC transcription and post translational modifications. However, MYC loss is dependent on proteasomal activity, and this loss was paralleled by an equally rapid induction of apoptosis. These findings are in contrast to those of glucose depletion which largely affected rates of proliferation in HMCLs, but had no effects on either MYC expression or viability. Therefore, inhibition of glutaminolysis is effective at inducing apoptosis and thus serves as a possible therapeutic target in MM.}, language = {en} } @article{AuerhammerArrowsmithBraunschweigetal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian D. and Jim{\´e}nez-Halla, J. Oscar C. and Kupfer, Thomas}, title = {Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {10}, doi = {10.1039/c7sc03193a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170255}, pages = {7066-7071}, year = {2017}, abstract = {The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.}, language = {en} } @article{BrumbergKuestersAlMomanietal.2017, author = {Brumberg, Joachim and K{\"u}sters, Sebastian and Al-Momani, Ehab and Marotta, Giorgio and Cosgrove, Kelly P. and van Dyck, Christopher H. and Herrmann, Ken and Homola, Gy{\"o}rgy A. and Pezzoli, Gianni and Buck, Andreas K. and Volkmann, Jens and Samnick, Samuel and Isaias, Ioannis U.}, title = {Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study}, series = {Annals of Clinical and Translational Neurology}, volume = {4}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170406}, pages = {632-639}, year = {2017}, abstract = {Objective: To investigate the association between levodopa-induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak-of-dose levodopa-induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5-[\(^{123}\)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine single-photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography, to measure dopamine reuptake transporter density and 2-[\(^{18}\)F]fluoro-2-deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic-depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.}, language = {en} } @article{LandmannHennigIgnat'evetal.2017, author = {Landmann, Johannes and Hennig, Philipp T. and Ignat'ev, Nikolai V. and Finze, Maik}, title = {Borylation of fluorinated arenes using the boron centred nucleophile B(CN)\(_{3}\)\(^{2-}\) - a unique entry to aryltricyanoborates}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {9}, doi = {10.1039/c7sc02249b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170417}, pages = {5962-5968}, year = {2017}, abstract = {The potassium salt of the boron-centred nucleophile B(CN)\(_{3}\)\(^{2-}\)(1) readily reacts with perfluorinated arenes, such as hexafluorobenzene, decafluorobiphenyl, octafluoronaphthalene and pentafluoropyridine, which results in KF and the K\(^{+}\) salts of the respective borate anions with one {B(CN)\(_{3}\)} unit bonded to the (hetero)arene. An excess of K\(_{2}\)1 leads to the successive reaction of two or, in the case of perfluoropyridine, even three C-F moieties and the formation of di- and trianions, respectively. Moreover, all of the 11 partially fluorinated benzene derivatives, C\(_{6}\)F\(_{6-n}\)H\(_{n}\) (n = 1-5), generally react with K\(_{2}\)1 to give new tricyano(phenyl)borate anions with high chemo- and regioselectivity. A decreasing number of fluorine substituents on benzene results in a decrease in the reaction rate. In the cases of partially fluorinated benzenes, the addition of LiCl is advantageous or even necessary to facilitate the reaction. Also, pentafluorobenzenes R-C\(_{6}\)F\(_{5}\) (R = -CN, -OMe, -Me, or -CF\(_{3}\)) react via C-F/C-B exchange that mostly occurs in the para position and to a lesser extent in the meta or ortho positions. Most of the reactions proceed via an S\(_{N}\)Ar mechanism. The reaction of 1,4-F\(_{2}\)C\(_{6}\)H\(_{4}\) with K\(_{2}\)1 shows that an aryne mechanism has to be considered in some cases as well. In summary, a wealth of new stable tricyano(aryl)borates have been synthesised and fully characterized using multi-NMR spectroscopy and most of them were characterised using single-crystal X-ray diffraction.}, language = {en} } @phdthesis{Carinci2017, author = {Carinci, Flavio}, title = {Quantitative Characterization of Lung Tissue Using Proton MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Mueller2017, author = {M{\"u}ller, Stephanie}, title = {Plant thermotolerance: The role of heat stress-induced triacylglycerols in \(Arabidopsis\) \(thaliana\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152829}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Plants are exposed to high temperature, especially during hot summer days. Temperatures are typically lowest in the morning and reach a maximum in the afternoon. Plants can tolerate and survive short-term heat stress even on hot summer days. A. thaliana seedlings have been reported to tolerate higher temperatures for different time periods, a phenomenon that has been termed basal thermotolerance. In addition, plants have the inherent capacity to acclimate to otherwise lethal temperatures. Arabidopsis thaliana seedlings acclimate at moderately elevated temperatures between 32-38° C. During heat acclimation, a genetically programmed heat shock response (HSR) is triggered that is characterized by a rapid activation of heat shock transcription factors (HSFs), which trigger a massive accumulation of heat shock proteins that are chiefly involved in protein folding and protection. Although the HSF-triggered heat-shock response is well characterized, little is known about the metabolic adjustments during heat stress. The aim of this work was to get more insight into heat-responsive metabolism and its importance for thermotolerance. In order to identify the response of metabolites to elevated temperatures, global metabolite profiles of heat-acclimated and control seedlings were compared. Untargeted metabolite analyses revealed that levels of polyunsaturated triacylglycerols (TG) rapidly increase during heat acclimation. TG accumulation was found to be temperature-dependent in a temperature range from 32-50° C (optimum at 42° C). Heat-induced TG accumulation was localized in extra-chloroplastic compartments by chloroplast isolation as well as by fluorescence microscopy of A. thaliana cell cultures. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation occurred independently to HSF. Moreover, the TG response was not limited to heat stress since drought and salt stress (but not short-term osmotic, cold and high light stress) also triggered an accumulation of TGs. In order to reveal the origin of TG synthesis, lipid analysis was carried out. Heat-induced accumulation of TGs does not derive from massive de novo fatty acid (FA) synthesis. On the other hand, lipidomic analyses of A. thaliana seedlings indicated that polyunsaturated FA from thylakoid galactolipids are incorporated into cytosolic TGs during heat stress. This was verified by lipidomic analyses of A. thaliana fad7/8 transgenic seedlings, which displayed altered FA compositions of plastidic lipids. In addition, wild type A. thaliana seedlings displayed a rapid conversion of plastidic monogalactosyldiacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs and diacylglycerols (DGs). For TG synthesis, DG requires a FA from the acyl CoA pool or phosphatidylcholine (PC). Seedlings deficient in phospholipid:diacylglycerol acyltransferase1 (PDAT1) were unable to accumulate TGs following heat stress; thus PC appears to be the major FA donor for TGs during heat treatment. These results suggest that TG and oligogalactolipid accumulation during heat stress is driven by post-translationally regulated plastid lipid metabolism. TG accumulation following heat stress was found to increase basal thermotolerance. Pdat1 mutant seedlings were more sensitive to severe heat stress without prior acclimatization, as revealed by a more dramatic decline of the maximum efficiency of PSII and lower survival rate compared to wild type seedlings. In contrast, tgd1 mutants over-accumulating TGs and oligogalactolipids displayed a higher basal thermotolerance compared to wild type seedlings. These results therefore suggest that accumulation of TGs increases thermotolerance in addition to the genetically encoded heat shock response.}, subject = {Triglyceride}, language = {en} } @phdthesis{Schwab2017, author = {Schwab, Andrea}, title = {Development of an osteochondral cartilage defect model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The limited intrinsic self-healing capability of articular cartilage requires treatment of cartilage defects. Material assisted and cell based therapies are in clinical practice but tend to result in formation of mechanical inferior fibro-cartilage in long term follow up. If a lesion has not been properly restored degenerative diseases are diagnosed as late sequela causing pain and loss in morbidity. Complex three dimensional tissue models mimicking physiological situation allow investigation of cartilage metabolism and mechanisms involved in repair. A standardized and reproducible model cultured under controllable conditions ex vivo to maintain tissue properties is of relevance for comparable studies. Topic of this thesis was the establishment of an cartilage defect model that allows for testing novel biomaterials and investigate the effect of defined defect depths on formation of repair tissue. In part I an ex vivo osteochondral defect model was established based on isolation of porcine osteochondral explants (OCE) from medial condyles, 8 mm in diameter and 5 mm in height. Full thickness cartilage defects with 1 mm to 4 mm in diameter were created to define ex vivo cartilage critical size after 28 days culture with custom developed static culture device. In part II of this thesis hydrogel materials, namely collagen I isolated from rat tail, commercially available fibrin glue, matrix-metalloproteinase clevable poly(ethylene glycol) polymerized with heparin (starPEGh), methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono-dilactate-poly(ethylene glycol) triblock copolymer/methacrylated hyaluronic acid (MP/HA), thiol functionalized HA/allyl functionalized poly(glycidol) (P(AGE/G)-HA-SH), were tested cell free and chondrocyte loaded (20 mio/ml) as implant in 4 mm cartilage defects to investigate cartilage regeneration. Reproducible chondral defects, 8 mm in diameter and 1 mm in height, were generated with an artificial tissue cutter (ARTcut®) to investigate effect of defect depth on defect regeneration in part III. In all approaches OCE were analyzed by Safranin-O staining to visualize proteoglycans in cartilage and/or hydrogels. Immuno-histological and -fluorescent stainings (aggrecan, collagen II, VI and X, proCollagen I, SOX9, RUNX2), gene expression analysis (aggrecan, collagen II and X, SOX9, RUNX2) of chondrocyte loaded hydrogels (part II) and proteoglycan and DNA content (Part I \& II) were performed for detailed analysis of cartilage regeneration. Part I: The development of custom made static culture device, consisting of inserts in which OCE is fixed and deep well plate, allowed tissue specific media supply without supplementation of TGF � . Critical size diameter was defined to be 4 mm. Part II: Biomaterials revealed differences in cartilage regeneration. Collagen I and fibrin glue showed presence of cells migrated from OCE into cell free hydrogels with indication of fibrous tissue formation by presence of proCollagen I. In chondrocyte loaded study cartilage matrix proteins aggrecan, collagen II and VI and transcription factor SOX9 were detected after ex vivo culture throughout the two natural hydrogels collagen I and fibrin glue whereas markers were localized in pericellular matrix in starPEGh. Weak stainings resulted for MP/HA and P(AGE/G)-HA-SH in some cell clusters. Gene expression data and proteoglycan quantification supported histological findings with tendency of hypertrophy indicated by upregulation of collagen X and RunX2 in MP/HA and P(AGE/G)-HA-SH. Part III: In life-dead stainings recruitment of cells from OCE into empty or cell free collagen I treated chondral defects was seen. Separated and tissue specific media supply is critical to maintain ECM composition in cartilage. Presence of OCE stimulates cartilage matrix synthesis in chondrocyte loaded collagen I hydrogel and reduces hypertrophy compared to free swelling conditions and pellet cultures. Differences in cartilage repair tissue formation resulted in preference of natural derived polymers compared to synthetic based materials. The ex vivo cartilage defect model represents a platform for testing novel hydrogels as cartilage materials, but also to investigate the effect of cell seeding densities, cell gradients, cell co-cultures on defect regeneration dependent on defect depth. The separated media compartments allow for systematic analysis of pharmaceutics, media components or inflammatory cytokines on bone and cartilage metabolism and matrix stability.}, subject = {Hyaliner Knorpel}, language = {en} } @phdthesis{Pieger2017, author = {Pieger, Elisabeth}, title = {Metacognition and Disfluency - The Effects of Disfluency on Monitoring and Performance}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this thesis, metacognition research is connected with fluency research. Thereby, the focus lies on how disfluency can be used to improve metacognitive monitoring (i.e., students` judgments during the learning process). Improving metacognitive monitoring is important in educational contexts in order to foster performance. Theories about metacognition and self-regulated learning suppose that monitoring affects control and performance. Accurate monitoring is necessary to initiate adequate control and better performance. However, previous research shows that students are often not able to accurately monitor their learning with meaningful text material. Inaccurate monitoring can result in inadequate control and low performance. One reason for inaccurate monitoring is that students use cues for their judgments that are not valid predictors of their performance. Because fluency might be such a cue, the first aim of this thesis is to investigate under which conditions fluency is used as a cue for judgments during the learning process. A fluent text is easy to process and, hence, it should be judged as easy to learn and as easy to remember. Inversely, a disfluent text is difficult to process, for example because of a disfluent font type (e.g., Mistral) or because of deleted letters (e.g., l_tt_rs). Hence, a disfluent text should be judged as difficult to learn and as difficult to remember. This assumption is confirmed when students learn with both fluent and disfluent material. When fluency is manipulated between persons, fluency seems to be less obvious as a cue for judgments. However, there are only a few studies that investigated the effects of fluency on judgments when fluency is manipulated between persons. Results from Experiment 1 (using deleted letters for disfluent text) and from Experiment 4 (using Mistral for disfluent text) in this thesis support the assumption that fluency is used as a cue for judgments in between-person designs. Thereby, however, the interplay with the type of judgment and the learning stage seems to matter. Another condition when fluency affects judgments was investigated in Experiment 2 and 3. The aim of these experiments was to investigate if disfluency leads to analytic monitoring and if analytic monitoring sustains for succeeding fluent material. If disfluency activates analytic monitoring that remains for succeeding fluent material, fluency should no longer be used as a cue for judgments. Results widely support this assumption for deleted letters (Experiment 2) as well as for the font type Mistral (Experiment 3). Thereby, again the interplay between the type of judgment and the learning stage matters. Besides the investigation of conditions when fluency is used as a cue for different types of judgments during the learning process, another aim of this thesis is to investigate if disfluency leads to accurate monitoring. Results from Experiment 3 and 4 support the assumption that Mistral can reduce overconfidence. This is the case when fluency is manipulated between persons or when students first learn with a fluent and then with a disfluent text. Dependent from the type of judgment and the learning stage, disfluency can lead even to underconfidence or to improved relative monitoring accuracy (Experiment 4). Improving monitoring accuracy is only useful when monitoring is implemented into better control and better performance. The effect of monitoring accuracy on control and performance was in the focus of Experiment 4. Results show that accurate monitoring does not result in improved control and performance. Thus, further research is required to develop interventions that do not only improve monitoring accuracy but that also help students to implement accurate monitoring into better control and performance. Summing up, the aim of this thesis is to investigate under which conditions fluency is used as a cue for judgments during the learning process, how disfluency can be used to improve monitoring accuracy, and if improved monitoring accuracy leads to improved performance. By connecting metacognition research and fluency research, further theories about metacognition and theories about fluency are specified. Results show that not only the type of fluency and the design, but also the type of judgment, the type of monitoring accuracy, and the learning stage should be taken into account. Understanding conditions that affect the interplay between metacognitive processes and performance as well as understanding the underlying mechanisms is necessary to enable systematic research and to apply findings into educational settings.}, subject = {Metakognition}, language = {en} } @unpublished{AuerhammerArrowsmithBissingeretal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Bissinger, Philipp and Braunschweig, Holger and Dellermann, Theresa and Kupfer, Thomas and Lenczyk, Carsten and Roy, Dipak and Sch{\"a}fer, Marius and Schneider, Christoph}, title = {Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201704669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155419}, year = {2017}, abstract = {A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes.}, language = {en} } @phdthesis{Geissler2017, author = {Geißler, Florian}, title = {Transport properties of helical Luttinger liquids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153450}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensional edge channels are helical in nature, meaning that there is a locking of the spin orientation of an electron and its direction of motion. Due to the symmetry of time-reversal, elastic backscattering off interspersed impurities is suppressed in such a helical system, and transport is approximately ballistic. This allows in principle for the realization of novel energy-efficient devices, ``spintronic`` applications, or the formation of exotic bound states with non-Abelian statistics, which could be used for quantum computing. The present work is concerned with the general transport properties of one-dimensional helical states. Beyond the topological protection mentioned above, inelastic backscattering can arise from various microscopic sources, of which the most prominent ones will be discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of electron-electron interactions can be of major importance in this context. First, we review well-established techniques of many-body physics in one dimension such as perturbative renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The latter allow us to treat electron interactions in an exact way. Those methods then are employed to derive the corrections to the conductance in a helical transport channel, that arise from various types of perturbations. Particularly, we focus on the interplay of Rashba spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-particle backscattering. It is demonstrated, that microscopic details of the system, such as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence of non-interacting leads attached to the system, can fundamentally alter the transport signature. By comparison of the predicted corrections to the conductance to a transport experiment, one can gain insight about the microscopic processes and the structure of a quantum spin Hall sample. Another important mechanism we analyze is backscattering induced by magnetic moments. Those findings provide an alternative interpretation of recent transport measurements in InAs/GaSb quantum wells.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Reeg2017, author = {Reeg, Johannes}, title = {Empirical Studies of Contemporaneous Banking Research}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Banks perform important functions for the economy. Besides financial intermediation, banks provide information, liquidity, maturity- and risk-transformation (Fama, 1985). Banks ensure the transfer of liquidity from depositors to the most profitable investment projects. In addition, they perform important screening and monitoring services over investments hence contributing steadily to the efficient allocation of resources across the economy (Pathan and Faff, 2013). Since banks provide financial services all across the economy, this exposes banks (as opposed to non-banks) to systemic risk: the recent financial crisis revealed that banks can push economies into severe recessions. However, the crisis also revealed that certain bank types appear far more stable than others. For instance, cooperative banks performed better during the crisis than commercial banks. Different business models may reason these performance-differences: cooperative banks focus on relationship lending across their region, hence these banks suffered less from the collapse of the US housing market. Since cooperative banks performed better during the crisis than commercial banks, it is quite surprising that research concerning cooperative banks is highly underrepresented in the literature. For this reason, the following three studies aim to contribute to current literature by examining three independent contemporaneous research questions in the context of cooperative banks. Chapter 2 examines whether cooperative banks benefit from revenue diversification: Current banking literature reveals the recent trend in the overall banking industry that banks may opt for diversification by shifting their revenues to non-interest income. However, existing literature also shows that not every bank benefits from revenue diversification (Mercieca et al., 2007; Stiroh and Rumble, 2006; Goddard et al., 2008). Stiroh and Rumble (2006) find that large commercial banks (US Financial Holding Companies) perceive decreasing performance by shifting revenues towards non-interest income. Revenues from cooperative banks differ from those of commercial banks: commercial banks trade securities and derivatives, sell investment certificates and other trading assets. Concerning the lending business, commercial banks focus on providing loans for medium-sized and large companies rather than for small (private) customers. Cooperative banks rely on commission income (fees) from monetary transactions and selling insurances as a source of non-interest income. They generate most of their interest income by providing loans to small and medium-sized companies as well as to private customers in the region. These differences in revenues raise the question whether findings from Stiroh and Rumble (2006) apply to cooperative banks. For this reason, Chapter 2 evaluates a sample of German cooperative banks over the period 2005 to 2010 and aims to investigate the following research question: which cooperative banks benefit from revenue diversification? Results show that findings from Stiroh and Rumble (2006) do not apply to cooperative banks. Revenue concentration is positive related to risk-adjusted returns (indirect effect) for cooperative banks. At the same time, non-interest income is more profitable than interest income (direct effect). The evaluation of the underlying non-interest income share shows that banks who heavily focus on non-interest income benefit by shifting towards non-interest income. This finding arises due to the fact, that the positive direct effect dominates the negative indirect effect, leading in a positive (and significant) net effect. Furthermore, results reveal a negative net effect for banks who are heavily exposed to interest generating activities. This indicates that shifting to non-interest income decreases risk-adjusted returns for these banks. Consequently, these banks do better by focusing on the interest business. Overall, results show evidence that banks need time to build capabilities, expertise and experience before trading off return and risk efficiently with regard on revenue diversification. Chapter 3 deals with the relation between credit risk, liquidity risk, capital risk and bank efficiency: There has been rising competition in the European banking market due to technological development, deregulation and the introduction of the Euro as a common currency in recent decades. In order to remain competitive banks were forced to improve efficiency. That is, banks try to operate closer to a "best practice" production function in the sense that banks improve the input - output relation. The key question in this context is if banks improve efficiency at a cost of higher risk to compensate decreasing earnings. When it comes to bank risk, a large strand of literature discusses the issue of problem loans. Several studies identify that banks hold large shares of non-performing loans in their portfolio before becoming bankrupt (Barr and Siems, 1994; Demirg{\"u}c-Kunt, 1989). According to efficiency, studies show that the average bank generates low profits and incorporates high costs compared to the "best practice" production frontier (Fiordelisi et al., 2011; Williams, 2004). At first glance, these two issues do not seem related. However, Berger and DeYoung (1997) show that banks with poor management are less able to handle their costs (low cost-efficiency) as well as to monitor their debtors in an appropriate manner to ensure loan quality. The negative relationship between cost efficiency and non-performing loans leads to declining capital. Existing studies (e.g. Williams, 2004; Berger and DeYoung, 1997) show that banks with a low level of capital tend to engage in moral hazard behavior, which in turn can push these banks into bankruptcy. However, the business model of cooperative banks is based on the interests of its commonly local customers (the cooperative act: \S 1 GenG). This may imply that the common perception of banks engaging in moral hazard behavior may not apply to cooperative banks. Since short-term shareholder interests (as a potential factor for moral hazard behavior) play no role for cooperative banks this may support this notion. Furthermore, liquidity has been widely neglected in the existing literature, since the common perception has been that access to additional liquid funds is not an issue. However, the recent financial crisis revealed that liquidity dried up for many banks due to increased mistrust in the banking sector. Besides investigating moral hazard behavior, using data from 2005 to 2010 this study moves beyond current literature by employing a measure for liquidity risk in order to evaluate how liquidity risk relates to efficiency and capital. Results mostly apply to current literature in this field since the empirical evaluation reveals that lower cost and profit-efficiency Granger-cause increases in credit risk. At the same time, results indicate that credit risk negatively Granger-causes cost and profit-efficiency, hence revealing a bi-directional relationship between these measures. However, most importantly, results also show a positive relationship between capital and credit risk, thus displaying that moral hazard behavior does not apply to cooperative banks. Especially the business model of cooperative banks, which is based on the interests of its commonly local customers (the cooperative act: \S 1 GenG) may reason this finding. Contrary to Fiordelisi et al. (2011), results also show a negative relationship between capital and cost-efficiency, indicating that struggling cooperative banks focus on managing their cost-exposure in following periods. Concerning the employed liquidity risk measure, the authors find that banks who hold a high level of liquidity are less active in market related investments and hold high shares of equity capital. This outcome clearly reflects risk-preferences from the management of a bank. Chapter 4 examines governance structures of cooperative banks: The financial crisis of 2007/08 led to huge distortions in the banking market. The failure of Lehman Brothers was the beginning of government interventions in various countries all over the world in order to prevent domestic economies from even further disruptions. In the aftermath of the crisis, politicians and regulators identified governance deficiencies as one major factor that contributed to the crisis. Besides existing studies in the banking literature (e.g. Beltratti and Stulz, 2012; Diamond and Rajan, 2009; Erkens et al., 2012) an OECD study from 2009 supports this notion (Kirkpatrick, 2009). Public debates increased awareness for the need of appropriate governance mechanisms at that time. Consequently, politicians and regulators called for more financial expertise on bank boards. Accordingly, the Basel Committee on Banking Supervision states in principle 2 that "board members should remain qualified, individually and collectively, for their positions. They should understand their oversight and corporate governance role and be able to exercise sound, objective judgement about the affairs of the bank." (BCBS, 2015). Taking these perceptions into consideration the prevailing question is whether financial experts on bank boards do really foster bank stability? This chapter aims to investigate this question by referring to the study from Minton et al. (2014). In their study, the authors investigate US commercial bank holding companies between the period 2003 and 2008. The authors find that financial experts on the board of US commercial bank holding companies promote pro-cyclical bank performance. Accordingly, the authors question regulators view of more financial experts on the board leading to more banking stability. However, Minton et al. (2014) do not examine whether their findings accrue due to financial experts who act in the interests of shareholders or due to the issue that financial experts may have a more risk-taking attitude (due to a better understanding of financial instruments) than other board members. Supposed that their findings accrue due to financial experts who act in the interests of shareholders. Then financial experts on the board of banks where short-term shareholder interests play no role (cooperative banks) may prove beneficial with regard on bank performance during the crisis as well as in normal times. This would mean that they use their skills and expertise to contribute sustainable growth to the bank. Contrary, if this study reveals pro-cyclical bank performance related to financial experts on the board of cooperative banks, this finding may be addressed solely to the risk-taking attitude of financial experts (since short-term shareholder interests play no role). For this reason, this chapter aims to identify the channel for the relation of financial experts and bank performance by examining the following research question: Do financial experts on the board promote pro-cyclical bank performance in a setting where short-term shareholder interests play no role? Results show that financial experts on the board of cooperative banks (data from 2006 to 2011) do not promote pro-cyclical bank performance. Contrary, results show evidence that financial experts on the board of cooperative banks appear to foster long-term bank stability. This suggests that regulators should consider ownership structure (and hence business model of banks) when imposing new regulatory constraints for financial experts on the bank board.}, language = {en} } @phdthesis{Karl2017, author = {Karl, Franziska}, title = {The role of miR-21 in the pathophysiology of neuropathic pain using the model of B7-H1 knockout mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The impact of microRNA (miRNA) as key players in the regulation of immune and neuronal gene expression and their role as master switches in the pathophysiology of neuropathic pain is increasingly recognized. miR-21 is a promising candidate that could be linked to the immune and the nociceptive system. To further investigate the pathophysiological role of miR-21 in neuropathic pain, we assesed mice deficient of B7 homolog 1 (B7-H1 ko), a protein with suppressive effect on inflammatory responses. B7-H1 ko mice and wildtype littermates (WT) of three different age-groups, young (8 weeks), middle-aged (6 months), and old (12 months) received a spared nerve injury (SNI). Thermal withdrawal latencies and mechanical withdrawal thresholds were determined. Further, we investigated anxiety-, depression-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, dorsal root ganglia and white blood cells (WBC) at distinct time points after SNI. Na{\"i}ve B7-H1 ko mice showed mechanical hyposensitivity with increasing age. Young and middle-aged B7-H1 ko mice displayed lower mechanical withdrawal thresholds compared to WT mice. From day three after SNI both genotypes developed mechanical and heat hypersensitivity, without intergroup differences. As supported by the results of three behavioral tests, no relevant differences were found for anxiety-like behavior after SNI in B7-H1 ko and WT mice. Also, there was no indication of depression-like behavior after SNI or any effect of SNI on cognition in both genotypes. The injured nerves of B7-H1 ko and WT mice showed higher miR-21 expression and invasion of macrophages and T cells 7 days after SNI without intergroup differences. Perineurial miR-21 inhibitor injection reversed SNI-induced mechanical and heat hypersensitivity in old B7-H1 ko and WT mice. This study reveals that reduced mechanical thresholds and heat withdrawal latencies are associated with miR-21 induction in the tibial and common peroneal nerve after SNI, which can be reversed by perineurial injection of a miR-21 inhibitor. Contrary to expectations, miR-21 expression levels were not higher in B7-H1 ko compared to WT mice. Thus, the B7-H1 ko mouse may be of minor importance for the study of miR-21 related pain. However, these results spot the contribution of miR-21 in the pathophysiology of neuropathic pain and emphasize the crucial role of miRNA in the regulation of neuronal and immune circuits that contribute to neuropathic pain.}, subject = {neuropathic pain}, language = {en} } @article{DrenckhahnBaumgartnerZonneveld2017, author = {Drenckhahn, Detlev and Baumgartner, Werner and Zonneveld, Ben}, title = {Different genome sizes of Western and Eastern Ficaria verna lineages shed light on steps of Ficaria evolution}, series = {Forum Geobotanicum}, volume = {7}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2017.1122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155061}, pages = {27-33}, year = {2017}, abstract = {The genus Ficaria is now considered to comprize eight Eurasian species. The most widespread European species is the tetraploid F. verna Huds. The present study provides evidence for the existence of two main lineages of F. verna that differ considerably in their genomic size by about 3 pg. A Western F. verna lineage west of river Rhine displays a mean genome size (2C-value) of 34.2 pg and is almost precisely codistributed with the diploid F. ambigua Boreau (20 pg) north of the Mediterranean. The remaining part of Europe appears to be occupied by the Eastern F. verna lineage solely (mean genome size of 31.3 pg) which codistributes in South-Eastern Europe with the diploid F. calthifolia Rchb. (15 pg). There is little overlap at the boundary of Western and Eastern F. verna lineages with the occurrence of a separate intermediate group in the Netherlands (mean genomic size of 33.2 pg) that appears to result from hybridization of both lineages. On the basis of these observations and further considerations we propose development of F. ambigua and F. calthifolia south of the Alps with subsequent divergence to populate their current Western and Eastern European ranges, respectively. The Western F. verna lineage is proposed to originate from autotetraploidization of F. ambigua (precursor) with moderate genomic downsizing and the Eastern F. verna lineage from auto¬tetraploidization of F. calthifolia (precursor).}, subject = {Durchflusscytometrie}, language = {en} } @phdthesis{Borst2017, author = {Borst, Andreas}, title = {Apoptosis \& senescence: cell fate determination in inhibitor-treated melanoma cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Neoplasms of the skin represent the most frequent tumors worldwide; fortunately, most of them are benign or semi-malignant and well treatable. However, the two most aggressive and deadly forms of malignant skin-neoplasms are melanoma and Merkel cell carcinoma (MCC), being responsible for more than 90\% of skin-cancer related deaths. The last decade has yielded enormous progress in melanoma therapy with the advent of targeted therapies, like BRAF or MEK inhibitors, and immune-stimulating therapies, using checkpoint antibodies targeting CTLA- 4, PD-1 or PD-L1. Very recent studies suggest that also MCC patients benefit from a treatment with checkpoint antibodies. Nevertheless, in an advanced metastatic stage, a cure for both of these aggressive malignancies is still hard to achieve: while only a subset of patients experience durable benefit from the immune-based therapies, the widely applicable targeted therapies struggle with development of resistances that inevitably occur in most patients, and finally lead to their death. The four articles included in this thesis addressed current questions concerning therapy and carcinogenesis of melanoma and MCC. Moreover, they are discussed in the light of the up-to-date research regarding targeted and immune-based therapies. In article I we demonstrated that besides apoptosis, MAPK pathway inhibition in BRAF-mutated melanoma cells also induces senescence, a permanent cell cycle arrest. These cells may provide a source for relapse, as even permanently arrested cancer cells can contribute to a pro-tumorigenic milieu. To identify molecular factors determining the differential response, we established M14 melanoma cell line derived single cell clones that either undergo cell death or arrest when treated with BRAF/MEK inhibitors. Using these single cell clones, we demonstrated in article IV that downregulation of the pro-apoptotic BH3-only protein BIK via epigenetic silencing is involved in apoptosis deficiency, which can be overcome by HDAC inhibitors. These observations provide a possible explanation for the lack of a complete and durable response to MAPK inhibitor treatment in melanoma patients, and suggest the application of HDAC inhibitors as a complimentary therapy to MAPK pathway inhibition. Concerning MCC, we scrutinized the interactions between the Merkel cell polyomavirus' (MCV) T antigens (TA) and the tumor suppressors p53 and Rb in article II and III, respectively. In article III, we demonstrated that the cell cycle master regulator Rb is the crucial target of MCV large T (LT), while it - in contrast to other polyomavirus LTs - exhibits much lower affinity to the related proteins p107 and p130. Knockdown of MCV LT led to proliferation arrest in MCC cells, which can be rescued by knockdown of Rb, but not by knockdown of p107 and p130. Contrary to Rb, restriction of p53 in MCC seems to be independent of the MCV TAs, as we demonstrated in article II. In conclusion, the presented thesis has revealed new molecular details, regarding the response of melanoma cells towards an important treatment modality and the mechanisms of viral carcinogenesis in MCC.}, subject = {Melanom}, language = {en} } @phdthesis{Brendel2017, author = {Brendel, Michael}, title = {Correlation between Interface Energetics of Molecular Semiconductors and Opto-Electronic Properties of Planar Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {It was the scope of this work to gain a deeper understanding of the correlation between Interface energetics of molecular semiconductors in planar organic solar cells and the corresponding optoelectronic characteristics. For this aim, different approaches were followed. At first, a direct variation of donor/acceptor (D/A) interface energetics of bilayer cells was achieved by utilizing systematically modified donor compounds. This change could be correlated to the macroscopic device performance. At second, the impact of interface energetics was illustrated, employing a more extended device architecture. By introducing a thin interlayer between a planar D/A heterojunction, an energetic staircase was established. Exciton dissociation in such devices could be linked to the cascade energy level alignment of the photo-active materials. Finally, two different fullerene molecules C60 and C70 were employed in co-evaporated acceptor phases. The expected discrepancy in their electronic structure was related to the transport properties of the corresponding organic photovoltaic cells (OPVCs). The fullerenes are created simultaneously in common synthesis procedures. Next to the photo-physical relevance, the study was carried-out to judge on the necessity of separating the components from each other by purification which constitutes the cost-determining step in the total production costs.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Horn2017, author = {Horn, Hannes}, title = {Analysis and interpretation of (meta-)genomic data from host-associated microorganisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Host-microbe interactions are the key to understand why and how microbes inhabit specific environments. With the scientific fields of microbial genomics and metagenomics, evolving on an unprecedented scale, one is able to gain insights in these interactions on a molecular and ecological level. The goal of this PhD thesis was to make (meta-)genomic data accessible, integrate it in a comparative manner and to gain comprehensive taxonomic and functional insights into bacterial strains and communities derived from two different environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine sponges. This thesis focused first on the de novo assembly of bacterial genomes. A 5-step protocol was developed, each step including a quality control. The examination of different assembly software in a comparative way identified SPAdes as most suitable. The protocol enables the user to chose the best tailored assembly. Contamination issues were solved by an initial filtering of the data and methods normally used for the binning of metagenomic datasets. This step is missed in many published assembly pipelines. The described protocol offers assemblies of high quality ready for downstream analysis. Subsequently, assemblies generated with the developed protocol were annotated and explored in terms of their function. In a first study, the genome of a phyllosphere bacterium, Williamsia sp. ARP1, was analyzed, offering many adaptions to the leaf habitat: it can deal with temperature shifts, react to oxygen species, produces mycosporins as protection against UV-light, and is able to uptake photosynthates. Further, its taxonomic position within the Actinomycetales was infered from 16S rRNA and comparative genomics showing the close relation between the genera Williamsia and Gordonia. In a second study, six sponge-derived actinomycete genomes were investigated for secondary metabolism. By use of state-of-the-art software, these strains exhibited numerous gene clusters, mostly linked to polykethide synthases, non-ribosomal peptide synthesis, terpenes, fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety of possible produced compounds with antibiotic, antifungal or anti-cancer activity. These analysis highlight the potential for the synthesis of natural products and the use of genomic data as screening toolkit. In a last study, three sponge-derived and one seawater metagenomes were functionally compared. Different signatures regarding the microbial composition and GC-distribution were observed between the two environments. With a focus on bacerial defense systems, the data indicates a pronounced repertoire of sponge associated bacteria for bacterial defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats, restriction modification system, DNA phosphorothioation and phage growth limitation. In addition, characterizing genes for secondary metabolite cluster differed between sponge and seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for the screening of secondary metabolite genes. Furthermore, enriched defense systems are highlighted as feature of sponge-associated microbes and marks them as a selective trait.}, subject = {Bakterien}, language = {en} } @phdthesis{Kramer2017, author = {Kramer, Christian}, title = {Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150681}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20\% to more than 50\% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7\% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10\% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. .}, subject = {Ultrakurzzeitspektroskopie}, language = {en} } @phdthesis{Ostermayer2017, author = {Ostermayer, Ludwig}, title = {Integration of Prolog and Java with the Connector Architecture CAPJa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150713}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Modern software is often realized as a modular combination of subsystems for, e. g., knowledge management, visualization, verification, or the interaction with users. As a result, software libraries from possibly different programming languages have to work together. Even more complex the case is if different programming paradigms have to be combined. This type of diversification of programming languages and paradigms in just one software application can only be mastered by mechanisms for a seamless integration of the involved programming languages. However, the integration of the common logic programming language Prolog and the popular object-oriented programming language Java is complicated by various interoperability problems which stem on the one hand from the paradigmatic gap between the programming languages, and on the other hand, from the diversity of the available Prolog systems. The subject of the thesis is the investigation of novel mechanisms for the integration of logic programming in Prolog and object-oriented programming in Java. We are particularly interested in an object-oriented, uniform approach which is not specific to just one Prolog system. Therefore, we have first identified several important criteria for the seamless integration of Prolog and Java from the object-oriented perspective. The main contribution of the thesis is a novel integration framework called the Connector Architecture for Prolog and Java (CAPJa). The framework is completely implemented in Java and imposes no modifications to the Java Virtual Machine or Prolog. CAPJa provides a semi-automated mechanism for the integration of Prolog predicates into Java. For compact, readable, and object-oriented queries to Prolog, CAPJa exploits lambda expressions with conditional and relational operators in Java. The communication between Java and Prolog is based on a fully automated mapping of Java objects to Prolog terms, and vice versa. In Java, an extensible system of gateways provides connectivity with various Prolog system and, moreover, makes any connected Prolog system easily interchangeable, without major adaption in Java.}, subject = {Logische Programmierung}, language = {en} } @unpublished{WangArrowsmithBraunschweigetal.2017, author = {Wang, Sunewang Rixin and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian and Paprocki, Valerie and Winner, Lena}, title = {CuOTf-mediated intramolecular diborene hydroarylation}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C7CC07371B}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154055}, year = {2017}, abstract = {Upon complexation to CuOTf, a PMe\(_3\)-stabilized bis(9-anthryl) diborene slowly undergoes an intramolecular hydroarylation reaction at room temperature. Subsequent triflation of the B-H bond with CuOTf, followed by a PMe\(_3\) transfer, finally yields a cyclic sp\(^2\)-sp\(^3\) boryl-substituted boronium triflate salt.}, language = {en} } @phdthesis{Hagen2017, author = {Hagen, Franziska}, title = {Sphingolipids in gonococcal infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153852}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhea, has the potential to spread in the human host and cause a severe complication called disseminated gonococcal infection (DGI). The expression of the major outer membrane porin PorBIA is a characteristic of most gonococci associated with DGI. PorBIA binds to the scavenger receptor expressed on endothelial cells (SREC-I), which mediates the so-called low phosphate-dependent invasion (LPDI). This uptake mechanism enables N. gonorrhoeae to rapidly invade epithelial and endothelial cells in a phosphate-sensitive manner. We recently demonstrated that the neutral sphingomyelinase, which catalyses the hydrolysis of sphingomyelin to ceramide and phosphorylcholine, is required for the LPDI of gonococci in non-phagocytic cells. Neutral sphingomyelinase 2 (NSM2) plays a key role in the early PorBIA signaling by recruiting the PI3 kinase to caveolin. The following activation of the PI3 kinase-dependent downstream signaling leads to the engulfment of the bacteria. As a part of this work, I could confirm the involvement of the NSM2. The role of the enzyme was further elucidated by the generation of antibodies directed against NSM2 and the construction of an epithelium-based NSM2 knockout cell line using CRISPR/Cas9. The knockout of the NSM2 strongly inhibits the LPDI. The invasion could be, however, restored by the complementation of the knockout using an NSM2-GFP construct. However, the results could not be reproduced. In this work, I could show the involvement of further members of the sphingolipid pathway in the PorBIA-mediated invasion. Lipidome analysis revealed an increase of the bioactive molecules ceramide and sphingosine due to gonococcal infection. Both molecules do not only affect the host cell, but seem to influence the bacteria as well: while ceramide seems to be incorporated by the gonococci, sphingosine is toxic for the bacteria. Furthermore, the sphingosine kinase 2 (SPHK2) plays an important role in invasion, since the inhibition and knockdown of the enzyme revealed a negative effect on gonococcal invasion. To elucidate the role of the sphingosine kinases in invasion in more detail, an activity assay was established in this study. Additionally, the impact of the sphingosine-1-phosphate lyase (S1PL) on invasion was investigated. Inhibitor studies and infection experiments conducted with a CRISPR/Cas9 HeLa S1PL knockout cell line revealed a role of the enzyme not only in the PorBIA-mediated invasion, but also in the Opa50/HSPG-mediated gonococcal invasion. The signaling experiments allowed the categorization of the SPHK and S1PL activation in the context of infection. Like the NSM2, both enzymes play a role in the early PorBIA signaling events leading to the uptake of the bacteria. All those findings indicate an important role of sphingolipids in the invasion and survival of N. gonorrhoeae. In the last part of this work, the role of the NSM2 in the inhibition of apoptosis in neutrophils due to gonococcal infection was investigated. It could be demonstrated that the delayed onset of apoptosis is independent of neisserial porin and Opa proteins. Furthermore, the influence of neisserial peptidoglycan on PMN apoptosis was analysed using mutant strains, but no connection could be determined. Since the NSM2 is the most prominent sphingomyelinase in PMNs, fulfils manifold cell physiological functions and has already been connected to apoptosis, the impact of the enzyme on apoptosis inhibition due to gonococcal infection was investigated using inhibitors, with no positive results.}, subject = {gonococcal}, language = {en} } @phdthesis{Stockinger2017, author = {Stockinger, Bastian}, title = {Causes and effects of worker mobility between firms: empirical studies for Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This dissertation investigates selected causes and effects of worker mobility between firms in three empirical studies for Germany. Chapter 2 investigates the productivity effects of worker inflows to manufacturing establishments, distinguishing inflows by their previous employers' wage level, as a proxy for productivity. The chapter is motivated by several empirical studies which find that worker inflows from more productive or higher-paying firms increase hiring firms' productivity. The analyses in chapter 2 are based on a unique linked employer-employee data set. The findings indicate that inflows from higher-paying establishments do not increase hiring establishments' productivity, but inflows from lower-paying establishments do. Further analyses suggest that this effect is due to a positive selectivity of such inflows from their sending establishments. These findings can be interpreted as evidence of a reallocation process by which the best employees of lower-paying establishments become hired by higher-paying establishments. This process reflects the assortative pattern of worker mobility in Germany documented by Card et al. (2013) for the past decades. The chapter thus contributes to the literature by linking establishment-level productivity analysis to the assortative pattern of inter-firm worker mobility, thereby providing a micro-foundation for the latter. Chapter 3 focuses on a positive selection of workers moving between firms from another, more specific perspective. The analysis focuses on the importance of regional labor market competition for establishments' apprentice training and poaching of apprenticeship completers. Previous studies have found that firms provide less training if they are located in regions with strong labor market competition. This finding is usually interpreted as evidence of a higher risk of poaching in these regions. Yet, there is no direct evidence that regional competition is positively correlated with poaching. Building on a recently established approach to ex-post identify poaching of apprenticeship completers, this chapter is the first to directly investigate the correlation between regional labor market competition and poaching. Using German administrative data, it is found that competition indeed increases training establishments' probability of becoming poaching victims. However, poaching victims do not change their apprenticeship training activity in reaction to poaching. Instead, the findings indicate that the lower training activity in competitive regions can be attributed to lower retention rates, as well as a less adverse selection and lower labor and hiring costs of apprenticeship completers hired from rivals. Chapter 4 investigates the effects of local broadband internet availability on establishment-level employment growth. The analysis uses data for Germany in the years 2005-2009, when broadband was introduced in rural regions of Western Germany and in large parts of Eastern Germany. Technical frictions in broadband rollout are exploited to obtain exogenous variation in local broadband availability. The results suggest that broadband expansion had a positive effect on employment growth in the Western German service sector and a negative effect in Western German manufacturing, suggesting that broadband expansion has accelerated the reallocation of workers from manufacturing to services. Furthermore, this pattern of results is driven by pronounced positive effects in knowledge- and computer-intensive industries, suggesting that it is the actual use of broadband in the production process that leads to complementary hiring, respectively a slowdown of employment growth, in the respective sectors. For Eastern Germany, no significant employment growth effects are found.}, subject = {Arbeitsmarkt}, language = {en} } @phdthesis{Lieb2017, author = {Lieb, Julia}, title = {Counting Polynomial Matrices over Finite Fields : Matrices with Certain Primeness Properties and Applications to Linear Systems and Coding Theory}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-064-1 (print)}, doi = {10.25972/WUP-978-3-95826-065-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151303}, school = {W{\"u}rzburg University Press}, pages = {164}, year = {2017}, abstract = {This dissertation is dealing with three mathematical areas, namely polynomial matrices over finite fields, linear systems and coding theory. Coprimeness properties of polynomial matrices provide criteria for the reachability and observability of interconnected linear systems. Since time-discrete linear systems over finite fields and convolutional codes are basically the same objects, these results could be transfered to criteria for non-catastrophicity of convolutional codes. We calculate the probability that specially structured polynomial matrices are right prime. In particular, formulas for the number of pairwise coprime polynomials and for the number of mutually left coprime polynomial matrices are calculated. This leads to the probability that a parallel connected linear system is reachable and that a parallel connected convolutional codes is non-catastrophic. Moreover, the corresponding probabilities are calculated for other networks of linear systems and convolutional codes, such as series connection. Furthermore, the probabilities that a convolutional codes is MDP and that a clock code is MDS are approximated. Finally, we consider the probability of finding a solution for a linear network coding problem.}, subject = {Lineares System}, language = {en} } @phdthesis{Reis2017, author = {Reis, Helena}, title = {Characterization of telomere protein complexes in Trypanosoma brucei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {African trypanosomiasis is a disease endemic to sub-Saharan Africa. It affects humans as well as wild and domestic animals. The human form of the disease is known as sleeping sickness and the animal form as nagana, which are usually fatal if left untreated. The cause of African trypanosomiasis is the unicellular parasite Trypanosoma brucei. During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host the parasite multiplies as bloodstream form (BSF) extracellularly in the bloodstream or the lymphatic system. Survival of BSF parasites relies on immune evasion by antigenic variation of surface proteins because its extracellular lifestyle leads to direct exposure to immune responses. At any given time each BSF cell expresses a single type of variant surface glycoprotein (VSG) on its surface from a large repertoire. The active VSG is transcribed from one of 15 specialized subtelomeric domains, termed bloodstream expression sites (BESs). The remaining 14 BESs are silenced. This monoallelic expression and periodic switching of the expressed VSG enables to escape the immune response and to establish a persistent infection in the mammalian host. During developmental differentiation from BSF to the insect vector-resident procyclic form (PCF), the active BES is transcriptionally silenced to stop VSG transcription. Thus, all 15 BESs are inactive in the PCF cells as surface protein expression is developmentally regulated. Previous reports have shown that the telomere complex components TbTRF, TbRAP1 and TbTIF2 are involved in VSG transcriptional regulation. However, the precise nature of their contribution remains unclear. In addition, no information is available about the role of telomeres in the initiation and regulation of developmental BES silencing. To gain insights into the regulatory mechanisms of telomeres on VSG transcription and developmental repression it is therefore essential to identify the complete composition of the trypanosome telomere complex. To this end, we used two complementary biochemical approaches and quantitative label-free interactomics to determine the composition of telomere protein complexes in T. brucei. Firstly, using a telomeric pull-down assay we found 17 potential telomere-binding proteins including the known telomere-binding proteins TbTRF and TbTIF2. Secondly, by performing a co-immunoprecipitation experiment to elucidate TbTRF interactions we co-purified five proteins. All of these five proteins were also enriched with telomeric DNA in the pull-down assay. To validate these data, I characterized one of the proteins found in both experiments (TelBP1). In BSF cells, TelBP1 co-localizes with TbTRF and interacts with already described telomere-binding proteins such as TbTRF, TbTIF2 and TbRAP1 indicating that TelBP1 is a novel component of the telomere complex in trypanosomes. Interestingly, protein interaction studies in PCF cells suggested a different telomere complex composition compared to BSF cells. In contrast to known members of the telomere complex, TelBP1 is dispensable for cell viability indicating that its function might be uncoupled from the known telomere-binding proteins. Overexpression of TelBP1 had also no effect on cell viability, but led to the discovery of two additional shorter isoforms of TelBP1. However, their source and function remained elusive. Although TelBP1 is not essential for cell viability, western blot analysis revealed a 4-fold upregulation of TelBP1 in the BSF stage compared to the PCF stage supporting the concept of a dynamic telomere complex composition. We observed that TelBP1 influences the kinetics of transcriptional BES silencing during developmental transition from BSF to PCF. Deletion of TelBP1 caused faster BES silencing compared to wild-type parasites. Taken together, TelBP1 function illustrates that developmental BES silencing is a fine-tuned process, which involves stage-specific changes in telomere complex formation.}, subject = {Trypanosoma brucei}, language = {en} } @unpublished{BraunschweigBruecknerDeissenbergeretal.2017, author = {Braunschweig, Holger and Br{\"u}ckner, Tobias and Deißenberger, Andrea and Dewhurst, Rian and Gackstatter, Annika and G{\"a}rtner, Annalena and Hofmann, Alexander and Kupfer, Thomas and Prieschl, Dominic and Thiess, Torsten and Wang, Sunewang Rixin}, title = {Reaction of Dihalodiboranes(4) with N-Heterocyclic Silylenes: Facile Construction of 1-Aryl-2-Silyl-1,2-Diboraindanes}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201702377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153068}, year = {2017}, abstract = {Dihalodiboranes(4) react with an N-heterocyclic silylene (NHSi) to generate NHSi-adducts of 1-aryl-2-silyl-1,2-diboraindanes as confirmed by X-ray crystallography, featuring the functionalization of both B-X (X = halogen) bonds and a C-H bond under mild conditions. Coordination of a third NHSi to the proposed 1,1-diaryl- 2,2-disilyldiborane(4) intermediates, generated by a two-fold B-X insertion, may be crucial for the C-H borylation that leads to the final products. Notably, our results demonstrate the first C-H borylation with a strong B-F bond activated by silylene insertion.}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2017, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet Ali}, title = {Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201707907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153318}, year = {2017}, abstract = {Under a CO atmosphere the dihydrodiborene [(cAAC)HB=BH(cAAC)] underwent coordination of CO concomitant with reversible hydrogen migration from boron to the carbene carbon atom, as well as reversible CO insertion into the B=B bond. Heating of the CO-adduct resulted in two unusual cAAC ring-expansion products, one presenting a B=C bond to a six-membered 1,2-azaborinane-3-ylidene, the other an unprecedented nine-membered cyclic alkyne resulting from reductive cleavage of CO and spontaneous C≡C triple bond formation.}, language = {en} } @phdthesis{Flohr2017, author = {Flohr, Elena Leonie Ruth}, title = {The Scents of Interpersonality - On the Influence of Smells on the Evaluation and Processing of Social Stimuli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153352}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In daily life, olfactory stimuli are potential generators of affective states, but also have a strong influence on social interaction. Pleasant odors have been shown to increase perceived attractiveness and pro-social behavior, whereas unpleasant body odors are often associated with negative personality traits. Since both pleasant odors and positive affective state facilitate pro-social behavior, it is conceivable that the influence of the odors on social interaction is mediated by the induced affective state elicited by the odor itself. The present thesis aims at exploring the impact of hedonic, i.e., pleasant or unpleasant, odors on the processing and evaluation of social stimuli as assessed by verbal, physiological, and behavioral indices. First, I investigate the effects of initially neutral odors which gained threatening value through an aversive conditioning procedure on social stimuli (Study 1). Second, I study the influence of naturally hedonic odors on social interaction. Third, this thesis aims at disentangling differences in the effects of an odor attributed to either a social interaction partner or the environment where the social encounter takes place (Study 2, 3, and 4). In the first study, a context conditioning procedure was applied, during which one out of two long-lasting neutral odors was paired with an unpredictable aversive unconditioned stimulus (US, i.e., white noise). This odor (CTX+) thereby gained threatening value, while another odor (CTX-) remained unpaired and therefore signaled safety. During a test session, facial stimuli were presented within both conditioned olfactory contexts. Results indicate that autonomic arousal was increased to faces when presented in the threatening odor context. Additionally, participants rated facial stimuli as more aversive when presented in the threatening odor as compared to the safety odor, indicating that faces acquire hedonic value from the odor they were presented in. Strikingly, angry facial expressions received additional processing resources when presented within a threatening olfactory context, as reflected on verbal reports and electrodermal activity (EDA). This latter finding suggests that threat-related stimuli, here angry faces, are preferentially processed within an olfactory context where a threat might happen. Considering that the hedonic value of an odor may be quite subjective, I conducted a pilot study in order to identify odors with pleasant vs. unpleasant properties for most participants. Seven odors (four pleasant and three unpleasant) were rated with respect to their valence (pleasant vs. unpleasant), arousal (arousing vs. calm), and intensity. Additionally, EDA was measured. Two pleasant (Citral and Eucalyptol) and two unpleasant ("Animalis" and Isobutyraldehyde) odors were chosen from the original seven. The unpleasant odors were rated as more negative, arousing, and intense than the positive ones, but no differences were found regarding EDA. These four odors were subsequently used in a virtual reality (VR) paradigm with two odor attribution groups. Participants of the social attribution group (n = 59) were always passively guided into the same room (an office) towards one out of two virtual agents who were either paired with the pleasant or the unpleasant odor. Participants of the contextual attribution group (n = 58) were guided into one out of two rooms which were either paired with the pleasant or the unpleasant odor and where they always met the same agent. For both groups, the agents smiled, frowned or remained with a neutral facial expression. This design allowed evaluating the influence of odor valence as a within-subjects factor and the influence of odor attribution as a between-subjects factor. Unpleasant odors facilitated the processing of social cues as reflected by increased verbal and physiological arousal as well as reduced active approach behavior. Specific influence of odor valence on emotional facial expressions was found for ratings, EDA, and facial mimicry, with the unpleasant odor causing a levelling effect on the differences between facial expressions. The social attribution group exhibited larger differences between odors than the contextual group with respect to some variables (i.e., ratings and EDA), but not to others (i.e., electrocortical potentials - ERPs - and approach behavior). In sum, unpleasant in comparison to pleasant odors diminished emotional responses during social interaction, while an additional enhancing effect of the social attribution was observed on some variables. Interestingly, the awareness that an interaction partner would smell (pleasantly or unpleasantly) boosted the emotional reactivity towards them. In Study 3, I adapted the VR paradigm to a within-subjects design, meaning that the different attribution conditions were now manipulated block-wise. Instead of an approach task, participants had to move away from the virtual agent (withdrawal task). Results on the ratings were replicated from Study 2. Specifically, the difference between pleasant and unpleasant odors on valence, arousal, and sympathy ratings was larger in the social as compared to the contextual attribution condition. No effects of odor or attribution were found on EDA, whereas heart rate (HR) showed a stronger acceleration to pleasant odors while participants were passively guided towards the agent. Instead of an approach task, I focused on withdrawal behavior in this study. Interestingly, independently of the attribution condition, participants spent more time withdrawing from virtual agents, when an unpleasant odor was presented. In sum, I demonstrated that the attribution of the odors to the social agent itself had an enhancing effect on their influence on social interaction. In the fourth and last study, I applied a similar within-subjects protocol as in Study 3 with an additional Ultimatum Game task as a measure of social interaction. Overall findings replicated the results of Study 3 with respect to HR and EDA. Strikingly, participants offered less money to virtual agents in the bad smelling room than in the good smelling room. In contrast to Study 3, no effects of odor attribution were found in Study 4. In sum, again I demonstrated that unpleasant odor may lessen social interaction not only when the interaction partner smells badly, but also in more complex interaction situations. In conclusion, I demonstrated that hedonic odors in general influence social interaction. Thus, pleasant odors seem to facilitate, while unpleasant odors seem to reduce interpersonal exchanges. Therefore, the present thesis extends the body of literature on the influence of odors on the processing of social stimuli. Although I found a direct influence of odors on social preferences as well as on the physiological and behavioral responses to social stimuli, I did not disentangle impact of odor per se from the impact of the affective state. Interestingly, odor attribution might play an additional role as mediator of social interactions such as odor effects in social interactions might be boosted when the smell is attributed to an individual. However, the results in this regard were less straightforward, and therefore further investigations are needed. Future research should also take into account gender or other inter-individual differences like social anxiety.}, subject = {smell}, language = {en} } @article{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {33}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159647}, pages = {22564-22572}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @unpublished{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159656}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @phdthesis{Roeder2017, author = {R{\"o}der, Anja M.}, title = {Excited-State Dynamics in Open-Shell Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151738}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this thesis the excited-state dynamics of radicals and biradicals were characterized with femtosecond pump-probe spectroscopy. These open-shell molecules play important roles as combustion intermediates, in the formation of soot and polycyclic aromatic hydrocarbons, in atmospheric chemistry and in the formation of complex molecules in the interstellar medium and galactic clouds. In these processes molecules frequently occur in some excited state, excited either by thermal energy or radiation. Knowledge of the reactivity and dynamics of these excited states completes our understanding of these complex processes. These highly reactive molecules were produced via pyrolysis from suitable precursors and examined in a molecular beam under collision-free conditions. A first laser now excites the molecule, and a second laser ionizes it. Time-of-flight mass spectrometry allowed a first identification of the molecule, photoelectron spectroscopy a complete characterization of the molecule - under the condition that the mass spectrum was dominated by only one mass. The photoelectron spectrum was obtained via velocity-map imaging, providing an insight in the electronic states involved. Ion velocity map imaging allowed separation of signal from direct ionization of the radical in the molecular beam and dissociative photoionization of the precursor. During this thesis a modified pBasex algorithm was developed and implemented in python, providing an image inversion tool without interpolation of data points. Especially for noisy photoelectron images this new algorithm delivers better results. Some highlighted results: • The 2-methylallyl radical was excited in the ππ*-state with different internal energies using three different pump wavelengths (240.6 , 238.0 and 236.0 nm). Ionized with 800 nm multi-photon probe, the photoelectron spectra shows a s-Rydberg fingerprint spectrum, a highly positive photoelectron anisotropy of 1.5 and a bi-exponential decay ( τ1= 141\pm43 fs, τ2= 4.0\pm0.2 ps for 240.6 nm pump), where the second time-constant shortens for lower wavelengths. Field-induced surface hopping dynamics calculations confirm that the initially excited ππ*-state relaxes very fast to an s-Rydberg state (first experimentally observed time-constant), and then more slowly to the first excited state/ground state (second time-constant). With higher excitation energies the conical intersection between the s-Rydberg-state and the first excited state is reached faster, resulting in shorter life-times. • The benzyl radical was excited yith 265 nm and probed with two wavelengths, 798 nm and 398 nm. Probed with 798 nm it shows a bi-exponential decay (\tau_{1}=84\pm5 fs, \tau_{2}=1.55\pm0.12 ps), whereas with 398 nm probe only the first time-constant is observed (\tau_{1}=89\pm5 fs). The photoelectron spectra with 798 nm probe is comparable to the spectrum with 398 nm probe during the first 60 fs, at longer times an additional band appears. This band is due to a [1+3']-process, whereas with 398 nm only signal from a [1+1']-process can be observed. Non-adiabatic dynamic on the fly calculations show that the initially excited, nearly degenerate ππ/p-Rydberg-states relax very fast (first time-constant) to an s-Rydberg state. This s-Rydberg state can no longer be ionized with 398 nm, but with 798 nm ionization via intermediate resonances is still possible. The s-Rydberg state then decays to the first excited state (second time-constant), which is long-lived. • Para-xylylene, excited with 266 nm into the S2-state and probed with 800 nm, shows a bi-exponential decay (\tau_{1}=38\pm7 fs, \tau_{2}=407\pm9 fs). The initially excited S2-state decays quickly to S1-state, which shows dissociative photoionization. The population of the S1-state is directly visible in the masses of the dissociative photoionization products, benzene and the para-xylylene -H. • Ortho-benzyne, produced via pyrolysis from benzocyclobutendione, was excited with 266 nm in the S2 state and probed with 800 nm. In its time-resolved mass spectra the dynamic of the ortho-benzyne signal was superposed with the dynamics from dissociative photoionization of the precursor and of the ortho-benzyne-dimer. With time-resolved ion imaging gated on the ortho-benzyne these processes could be seperated, showing that the S2-state of ortho-benzyne relaxes within 50 fs to the S1-state.}, subject = {Radikal }, language = {en} } @article{KohlmorgenEliasSchoen2017, author = {Kohlmorgen, Britta and Elias, Johannes and Schoen, Christoph}, title = {Improved performance of the artus Mycobacterium tuberculosis RG PCR kit in a low incidence setting: a retrospective monocentric study}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14127}, doi = {10.1038/s41598-017-14367-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159248}, year = {2017}, abstract = {Tuberculosis (TB) and the spread of Mycobacterium tuberculosis complex (MTBC) strains resistant against rifampin (RIF) and isoniazid (INH) pose a serious threat to global health. However, rapid and reliable MTBC detection along with RIF/INH susceptibility testing are challenging in low prevalence countries due to the higher rate of false positives. Here, we provide the first performance data for the artus MTBC PCR assay in a low prevalence setting. We analyze 1323 respiratory and 311 non-respiratory samples with the artus MTBC PCR assay as well as by mycobacterial culture and microscopy. We propose retesting of specimens in duplicate and consideration of a determined cycle-threshold value cut-off greater than 34, as this significantly increases accuracy, specificity, and negative predictive value without affecting sensitivity. Furthermore, we tested fourteen MTBC positive samples with the GenoType MTBDRplus test and demonstrate that using an identical DNA extraction protocol for both assays does not impair downstream genotypic testing for RIF and INH susceptibility. In conclusion, our procedure optimizes the use of the artus MTB assay with workload efficient methods in a low incidence setting. Combining the modified artus MTB with the GenoType MTBDRplus assays allows rapid and accurate detection of MTBC and RIF/INH resistance.}, language = {en} } @article{LapaAriasLozaHayakawaetal.2017, author = {Lapa, Constantin and Arias-Loza, Paula and Hayakawa, Nobuyuki and Wakabayashi, Hiroshi and Werner, Rudolf A. and Chen, Xinyu and Shinaji, Tetsuya and Herrmann, Ken and Pelzer, Theo and Higuchi, Takahiro}, title = {Whitening and impaired glucose utilization of brown adipose tissue in a rat model of type 2 diabetes mellitus}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-17148-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159066}, pages = {16795}, year = {2017}, abstract = {Brown adipose tissue (BAT) is an attractive therapeutic target to combat diabetes and obesity due to its ability to increase glucose expenditure. In a genetic rat model (ZDF fa/fa) of type-2 diabetes and obesity, we aimed to investigate glucose utilization of BAT by \(^{18}\)F-FDG PET imaging. Male Zucker diabetic fatty (ZDF) and Male Zucker lean (ZL) control rats were studied at 13 weeks. Three weeks prior to imaging, ZDF rats were randomized into a no-restriction (ZDF-ND) and a mild calorie restriction (ZDF-CR) group. Dynamic \(^{18}\)F-FDG PET using a dedicated small animal PET system was performed under hyperinsulinemic-euglycemic clamp. \(^{18}\)F-FDG PET identified intense inter-scapular BAT glucose uptake in all ZL control rats, while no focally increased \(^{18}\)F-FDG uptake was detected in all ZDF-ND rats. Mild but significant improved BAT tracer uptake was identified after calorie restriction in diabetic rats (ZDF-CR). The weight of BAT tissue and fat deposits were significantly increased in ZDF-CR and ZDF-ND rats as compared to ZL controls, while UCP-1 and mitochondrial concentrations were significantly decreased. Whitening and severely impaired insulin-stimulated glucose uptake in BAT was confirmed in a rat model of type-2 diabetes. Additionally, calorie restriction partially restored the impaired BAT glucose uptake.}, language = {en} } @article{HefnerBerberichLanversetal.2017, author = {Hefner, Jochen and Berberich, Sara and Lanvers, Elena and Sanning, Maria and Steimer, Ann-Kathrin and Kunzmann, Volker}, title = {New insights into frequency and contents of fear of cancer progression/recurrence (FOP/FCR) in outpatients with colorectal carcinoma (CRC) receiving oral capecitabine: a pilot study at a comprehensive cancer center}, series = {Patient Preference and Adherence}, volume = {11}, journal = {Patient Preference and Adherence}, doi = {10.2147/PPA.S142784}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158476}, pages = {1907-1914}, year = {2017}, abstract = {Background: Fear of cancer progression/recurrence (FOP/FCR) is considered one of the most prevalent sources of distress in cancer survivors and associated with lower quality of life and functional impairment. Detailed measures of FOP/FCR are needed because little is known about the knowledge of FOP/FCR, its associations with the patient-doctor relationship, and the rate of adequate therapy. Colorectal cancer (CRC) is one of the most prevalent cancer entities, and oral capecitabine is widely prescribed as treatment. Therefore, we initiated a pilot study to expand the literature on FOP/FCR in CRC outpatients receiving capecitabine and to generate hypotheses for future investigations. Methods: This study included 58 patients treated at a comprehensive cancer center. FOP/FCR was assessed with the Fear of Progression Questionnaire (FOP-Q-SF). Satisfaction with the relationships with doctors was assessed with the Patient-Doctor Relationship Questionnaire-9 (PRDQ-9). Levels of side effects were rated by the patients on a visual analog scale. Clinical data were extracted from the charts. Results: A total of 19 out of 58 patients (36\%) suffered from FOP/FCR according to our assessment. Levels of FOP/FCR seemed to be mostly moderate to high. Only four out of the 19 distressed patients (21\%) were treated accordingly. Typical side effects of oncological treatment were associated with higher FOP/FCR. Satisfaction with doctor-patient relationships was not associated with FOP/FCR. Regarding single items of FOP/FCR, three out of the five most prevalent fears were associated with close relatives. Discussion: FOP/FCR occurred frequently in more than one in three patients, but was mostly untreated in this sample of consecutive outpatients with CRC receiving oral capecitabine. In detail, most fears were related to family and friends. In addition to an unmet need of patients, our data indicate sources of distress not considered thus far. If replicated in larger studies, results may help to inform intervention development and improve patient care.}, language = {en} } @article{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159514}, pages = {25002-25015}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @unpublished{RoederHumeniukGiegerichetal.2017, author = {R{\"o}der, Anja and Humeniuk, Alexander and Giegerich, Jens and Fischer, Ingo and Poisson, Lionel and Mitric, Roland}, title = {Femtosecond Time-Resolved Photoelectron Spectroscopy of the Benzyl Radical}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP01437F}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159474}, year = {2017}, abstract = {We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C\(_7\)H\(_7\) after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been excited at 265 nm into the D-band (\(\pi\pi^*\)) and the dynamics was probed using probe wavelengths of 398 nm or 798 nm. With 398 nm probe a single time constant of around 70-80 fs was observed. When the dynamics was probed at 798 nm, a second time constant \(\tau_2\)=1.5 ps was visible. It is assigned to further non-radiative deactivation to the lower-lying D\(_1\)/D\(_2\) states.}, language = {en} } @unpublished{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159483}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @inproceedings{WernerKobayashiWakabayashietal.2017, author = {Werner, Rudolf and Kobayashi, Ryohei and Wakabayashi, Hiroshi and Lapa, Constantin and Menke, Andreas and Higuchi, Takahiro}, title = {Effect of Antidepressants on Radiolabeled Metaiodobenzylguanidine (MIBG) Uptake}, series = {European Heart Journal - Cardiovascular Imaging}, volume = {18}, booktitle = {European Heart Journal - Cardiovascular Imaging}, number = {Supplement}, publisher = {Oxford University Press}, issn = {2047-2404}, doi = {10.1093/ehjci/jex080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161116}, pages = {i52-53}, year = {2017}, abstract = {No abstract available.}, subject = {MIBG}, language = {en} } @inproceedings{WernerWakabayashiJahnsetal.2017, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {PET-Guided Histological Characterization of Myocardial Infiltrating Cells in a Rat Model of Myocarditis}, series = {European Heart Journal - Cardiovascular Imaging}, volume = {18}, booktitle = {European Heart Journal - Cardiovascular Imaging}, number = {Supplement}, publisher = {Oxford University Press}, issn = {2047-2404}, doi = {10.1093/ehjci/jex071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161127}, pages = {i1-i3}, year = {2017}, abstract = {No abstract available.}, subject = {Myokarditis}, language = {en} } @inproceedings{WernerChenLapaetal.2017, author = {Werner, Rudolf and Chen, Xinyu and Lapa, Constantin and Robinson, Simon and Higuchi, Takahiro}, title = {Intracellular behavior of the novel sympathetic nerve agent \(^{18}\)F-LMI1195}, series = {Journal of Nuclear Cardiology}, volume = {24}, booktitle = {Journal of Nuclear Cardiology}, number = {4 Supplement (2017) Aug}, issn = {1071-3581}, doi = {10.1007/s12350-017-0984-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161137}, pages = {1461-1496}, year = {2017}, abstract = {No abstract available.}, subject = {Herz}, language = {en} } @inproceedings{WernerHiguchiMueggeetal.2017, author = {Werner, Rudolf and Higuchi, Takahiro and Muegge, Dirk and Javadi, Mehrbod S. and M{\"a}rkl, Bruno and Aulmann, Christoph and Buck, Andreas K. and Fassnacht, Martin and Lapa, Constantin and Kreissl, Michael C.}, title = {Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment}, series = {Journal of Nuclear Medicine}, volume = {58}, booktitle = {Journal of Nuclear Medicine}, number = {no. supplement 1}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161147}, pages = {169}, year = {2017}, abstract = {Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of \(^{18}\)F-fluorodeoxyglucose ([\(^{18}\)F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline \(^{18}\)F-FDG PET prior to and a follow-up \(^{18}\)F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of \(^{18}\)F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline \(^{18}\)F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5\% (SUV(LN)max <7.25, 4.3 y; p=0.03). Accordingly, preserved tumor metabolism in the follow-up PET (SUV(MTS)max >2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7\%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis.}, language = {en} } @inproceedings{WernerLapaBucketal.2017, author = {Werner, Rudolf and Lapa, Constantin and Buck, Andreas and Lassmann, Michael and H{\"a}nscheid, Heribert}, title = {Less is sometimes more - Accurate Dose Mapping after Endoradiotherapy with \(^{177}\)Lu-DOTATATE/-TOC by One-Single Measurement after 96 h}, series = {Journal of Nuclear Medicine}, volume = {58}, booktitle = {Journal of Nuclear Medicine}, number = {No. Supplement 1}, publisher = {Society of Nuclear Medicine and Molecular Imaging}, issn = {0161-5505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161168}, pages = {247}, year = {2017}, abstract = {No abstract available.}, language = {en} } @phdthesis{Schmitt2017, author = {Schmitt, Dominique}, title = {Initial characterization of mouse Syap1 in the nervous system: Search for interaction partners, effects of gene knockdown and knockout, and tissue distribution with focus on the adult brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The synapse-associated protein of 47 kDa (Sap47) in Drosophila melanogaster is the founding member of a phylogenetically conserved protein family of hitherto unknown molecular function. Sap47 is localized throughout the entire neuropil of adult and larval brains and closely associated with glutamatergic presynaptic vesicles of larval motoneurons. Flies lacking the protein are viable and fertile and do not exhibit gross structural or marked behavioral deficiencies indicating that Sap47 is dispensable for basic synaptic function, or that its function is compensated by other related proteins. Syap1 - the mammalian homologue of Sap47 - was reported to play an essential role in Akt1 phosphorylation in various non-neuronal cells by promoting the association of mTORC2 with Akt1 which is critical for the downstream signaling cascade for adipogenesis. The function of Syap1 in the vertebrate nervous system, however, is unknown so far. The present study provides a first description of the subcellular localization of mouse Syap1 in cultured motoneurons as well as in selected structures of the adult mouse nervous system and reports initial functional experiments. Preceding all descriptive experiments, commercially available Syap1 antibodies were tested for their specificity and suitability for this study. One antibody raised against the human protein was found to recognize specifically both the human and murine Syap1 protein, providing an indispensable tool for biochemical, immunocytochemical and immunohistochemical studies. In the course of this work, a Syap1 knockout mouse was established and investigated. These mice are viable and fertile and do not show obvious changes in morphology or phenotype. As observed for Sap47 in flies, Syap1 is widely distributed in the synaptic neuropil, particularly in regions rich in glutamatergic synapses but it was also detected at perinuclear Golgi-associated sites in certain groups of neuronal somata. In motoneurons the protein is especially observed in similar perinuclear structures, partially overlapping with Golgi markers and in axons, dendrites and axonal growth cones. Biochemical and immunohistochemical analyses showed widespread Syap1 expression in the central nervous system with regionally distinct distribution patterns in cerebellum, hippocampus or olfactory bulb. Besides its expression in neurons, Syap1 is also detected in non-neuronal tissue e.g. liver, kidney and muscle tissue. In contrast, non-neuronal cells in the brain lack the typical perinuclear accumulation. First functional studies with cultured primary motoneurons on developmental, structural and functional aspects reveal no influence of Syap1 depletion on survival and morphological features such as axon length or dendritic length. Contrary to expectations, in neuronal tissues or cultured motoneurons a reduction of Akt phosphorylation at Ser473 or Thr308 was not detected after Syap1 knockdown or knockout.}, subject = {Synapse}, language = {en} } @phdthesis{Bruehlmann2017, author = {Br{\"u}hlmann, David}, title = {Tailoring Recombinant Protein Quality by Rational Media Design}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Nowadays, more than half of the biotherapeutics are produced in mammalian cell lines as a result of correct protein folding and assembly as well as their faculty to bring about a variety of post-translational modifications. The widespread progression of biosimilars has moved the focus in mammalian cell-culture process development. Thereby, the modulation of quality attributes of recombinant therapeutic proteins has increasingly gained importance from early process development stages. Protein quality directly shapes the clinical efficacy and safety in vivo, and therefore, the control of the complex post-translational modifications, such as glycosylation (e.g. high mannose, fucosylation, galactosylation and sialylation), charge variants, aggregates and low-molecular-weight species formation, is pivotal for efficient receptor binding and for triggering the desired immune responses in patients. In the frame of biosimilar development, product quality modulation methods using the potential of the host cell line are particularly sought after to match the quality profile of the targeted reference medicinal product (RMP) as closely as possible. The environment the cell is dwelling in directly influences its metabolism and the resulting quality profile of the expressed protein. Thereby the cell culture medium plays a central role in upstream manufacturing. In this work, concentration adjustment of selected media components and supplementation with a variety of compounds was performed to alter various metabolic pathways, enzyme activities and in some cases the gene expression levels of Chinese Hamster Ovary (CHO) cells in culture. The supplementation of cell culture medium with the trisaccharide raffinose in fed-batch cultures entailed an increase of the abundance of high mannose glycans in two different CHO cell lines. Raffinose especially favored mannose 5 glycans. At the same time, it impaired cell culture performance, induced changes on the intracellular nucleotide levels and even varied the expression levels of glycosylation-related genes. Supplementation with a number of galactosyltransferase inhibiting compounds, in particular fluorinated galactose analogs (alpha- and beta-2F-peracetyl-galactose), consistently decreased the production of galactosylated monoclonal antibodies (mAb). By means of targeted addition during the culture rather than at the beginning, the inhibition was further increased, while limiting detrimental effects on both growth and productivity. High-throughput screening in 96-deepwell plates showed that spermine and L-ornithine also reduced the level of galactosylation. On the other hand, exploratory screening of a variety of potentially disulfide-bridge-reducing agents highlighted that the inherent low-molecular-species level of the proprietary platform cell culture process was likely due to favored reduction. This hypothesis was reinforced by the observation that supplementation of cysteine and N-acetylcysteine promoted fragmentation. Additionally, fragmentation decreased with higher protein expression. At that point, aiming to improve the efficiency in process development, a rational experimental design method was developed to identify and to define the optimal concentration range of quality modulating compounds by calling on a combination of high throughput fed-batch testing and multivariate data analysis. Seventeen medium supplements were tested in five parallel 96-deepwell plate experiments. The selection process of promising modulators for the follow-up experiment in shake tubes consisted in a three-step procedure, including principal component analysis, quantitative evaluation of their performance with respect to the specifications for biosimilarity and selection following a hierarchical order of decisions using a decision tree. The method resulted in a substantial improvement of the targeted glycosylation profile in only two experimental rounds. Subsequent development stages, namely validation and transfer to industrial-scale facilities require tight control of product quality. Accordingly, further mechanistic understanding of the underlying processes was acquired by non-targeted metabolomic profiling of a CHO cell line expressing a mAb cultured in four distinct process formats. Univariate analysis of intra- and extracellular metabolite and temporal glycosylation profiles provided insights in various pathways. The numerous of parameters were the main driver to carry out principal component analysis, and then, using the methodology of partial-least-square (PLS) projection on latent structures, a multivariate model was built to correlate the extracellular data with the distinct glycosylation profiles. The PLS observation model proved to be reliable and showed its great benefit for glycan pattern control in routine manufacturing, especially at large scale. Rather than relying on post-production interpretation of glycosylation results, glycosylation can be predicted in real-time based on the extracellular metabolite levels in the bioreactor. Finally, for the bioactivity assessment of the glycan differences between the biosimilar and the reference medicinal product (RMP), the health agencies may ask for in the drug registration process, extended ranges of glycan variants need to be generated so that the in vitro assays pick up the changes. The developed glycosylation modulator library enabled the generation of extreme glycosylation variants, including high mannose, afucosylated, galactosylated as well as sialic acid species of both a mAb and an antibody fusion molecule with three N-glycosylation sites. Moreover, to create increased variety, enzymatic glycoengineering was explored for galactosylation and sialylation. The glyco variants induced significant responses in the respective in vitro biological activity assays. The data of this work highlight the immense potential of cell culture medium optimization to adjust product quality. Medium and feed supplementation of a variety of compounds resulted in reproducible and important changes of the product quality profile of both mAbs and a fusion antibody. In addition to the intermediate modulation ranges that largely met the requirements for new-biological-entity and biosimilar development, medium supplementation even enabled quick and straightforward generation of extreme glycan variants suitable for biological activity testing.}, subject = {Zellkultur}, language = {en} } @inproceedings{OPUS4-14713, title = {Research Network on Methodology for the Analysis of Social Interaction. Proceedings of the ninth meeting of MASI.}, editor = {Brill, Michael and Jonsson, Gudberg and Schwab, Frank}, isbn = {978-3-945459-16-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147135}, year = {2017}, abstract = {T-pattern analysis supports studies of various aspects of human or animal behavior as well as interaction between human subjects and animal or artificial agents. The following proceedings give an overiew on the application of T-pattern analysis in different research fields like media, gaming, human behaviour, social and organisational interaction as well as sports and health.}, subject = {Verhaltensmuster}, language = {en} }