@phdthesis{Liu2007, author = {Liu, Jiming}, title = {Transcription mechanisms and functions of NFATc1 in T lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24270}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Nuclear Factors of Activated T cells (NFATs) are critical transcription factors that direct gene expression in immune and non-immune cells. Interaction of T cells with Ag-presenting cells results in the clustering of T-cell antigen receptor (TCR), co-receptors and integrins. Subsequent signal transduction resulting in NFAT activation leads to cytokine gene expression. Among the NFATs expressed in T cells, NFATc1 shows a unique induction property, which is essential for T cell differentiation and activation. It was revealed before that 3 major isoforms of NFATc1 are generated in activated T cells - the inducible short NFATc1/A, and the longer isoforms NFATc1/B and C. However, due to alternative splicing events and the existence of two different promoters and two alternative polyadenylation, we show here that 6 isoforms are synthesized in T cells which differ in their N-terminal and C-terminal peptides. In these experiments, we have identified these 6 isoforms by semi-quantitative long distance RT-PCR in several T cells subsets, and the inducible properties of 6 isoforms were investigated in those cells. The short NFATc1/\&\#61537;A which is under control of the P1 promoter and the proximal pA1 polyadenylation site was the most prominent and inducible isoform in T effector cells. The transcription of the longer NFATc1/\&\#61538;B and \&\#61538;C isoforms is constitutive and even reduced in activated T lymphocytes. In addition to NFATc1 autoregulation, we tried to understand the NFATc1 gene regulation under the control of PKC pathways by microarray analysis. Compared to treatment of T cells with ionomycin alone (which enhances Ca++ flux), treatment of cells with the phorbolester TPA (leading to PKC activation) enhanced the induction of NFATc1. Microarray analysis revealed that PKC activation increased the transcription of NF-\&\#61547;B1, Fos and JunB, which are important transcription factors binding to the regulatory regions of the NFATc1 gene. Besides the promoting effect of these transcription factors, we provided evidence that p53 and its targeting gene, Gadd45\&\#61537;, exerted a negative effect on NFATc1 gene transcription. Summarizing all these results, we drew novel conclusions on NFATc1 expression, which provide a more detailed view on the regulatory mechanisms of NFATc1 transcription. Considering the high transcription and strong expression of NFATc1 in various human lymphomas, we propose that similar to NF-\&\#61547;B, NFATc1/\&\#61537;A plays a pivotal role in lymphomagenesis.}, subject = {NFATs}, language = {en} } @phdthesis{Schwab2009, author = {Schwab, Nicholas}, title = {The importance of CD8\(^+\) T cells and antigen-presenting cells in the immune reaction of primary inflammatory versus degenerative diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The bidirectional influence of parenchymal cells and cells of the immune system, especially of antigen-presenting and CD8\(^+\) T cells, in situations of putative auto- immune pathogenicity and degeneration was the main topic of this thesis. In the first part, the influence of human muscle cells on antigen-presenting cells was investigated. In inflammatory myopathies prominent infiltrates of immune cells containing T cells and antigen-presenting cells like macrophages and dendritic cells are present. The hypothesis was that human myoblasts have an inhibiting influence on these antigen-presenting cells under homeostatic conditions. A dysfunction or impairment under inflammatory circumstances might contribute to the development of myopathic conditions. The surface analysis of dendritic cells cocultured with myoblasts showed that immature dendritic cells could be driven into a reversible semi- mature state with significantly elevated levels of CD80. These dendritic cells were additionally characterized by their inhibiting function on T-cell proliferation. It was also shown that the lysates of healthy myoblasts could strongly enhance the phagocytic ability of macrophages, which could help with muscle regeneration and which might be disturbed in myositis patients. The second part of this thesis was about the clonal specificity of CD8\(^+\) T cells in a mouse model with genetically induced over-expression of PLP in oligodendrocytes. Here, we could show that the cytotoxic T lymphocytes, which had previously been shown to be pathogenic, were clonally expanded in the CNS of the transgenic mice. The amino acid sequences of the corresponding receptor chains were not identical, yet showed some similarities, which could mean that these clones recognize similar antigens (or epitopes of the same antigen). The knockout of PD-1 in this setting allowed for an analysis of the importance of tissue immune regulation. It became evident that the absence of PD-1 induced a larger number of clonal expansions in the CNS, hinting towards a reduced threshold for clonal disturbance and activation in these T cells. The expansions were, however, not pathogenic by themselves. Only in the presence of tissue damage and an antigenic stimulus (in our case the overexpression of PLP), the PD-1 limitation exacerbated the immune pathogenicity. Therefore, only in the presence of a "tissue damage signal", the dyshomeostasis of T cells lacking PD-1 achieved high pathogenetic relevance. Finally, we investigated the pathogenetic role of CD8 T cells in Rasmussen encephalitis, a rare and chronic neurological disease mainly affecting children. The analysis of the T-cell receptor repertoire in Rasmussen encephalitis patients in the peripheral CD4\(^+\) and CD8\(^+\) T-cell compartments as well as the brain revealed the involvement of T cells in the pathogenicity of this disease. Many clonal expansions in the brain matched CD8\(^+\) T-cell expansions in the periphery on the sequence level. These putatively pathogenic clones could be visualized by immunohistochemistry in the brain and were found in close proximity to astrocytes and neurons. Additionally, the expanded clones could be found in the periphery of patients for at least one year.}, subject = {T-Lymphozyt}, language = {en} } @phdthesis{Storim2011, author = {Storim, Julian}, title = {Dynamic mapping of the immunological synapse in T cell homeostasis and activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Polarity and migration are essential for T cell activation, homeostasis, recirculation and effector function. To address how T cells coordinate polarization and migration when interacting with dendritic cells (DC) during homeostatic and activating conditions, a low density collagen model was used for confocal live-cell imaging and high-resolution 3D reconstruction of fixed samples. During short-lived (5 to 15 min) and migratory homeostatic interactions, recently activated T cells simultaneously maintained their amoeboid polarization and polarized towards the DC. The resulting fully dynamic and asymmetrical interaction plane comprised all compartments of the migrating T cell: the actin-rich leading edge drove migration but displayed only moderate signaling activity; the mid-zone mediated TCR/MHC induced signals associated with homeostatic proliferation; and the rear uropod mediated predominantly MHC independent signals possibly connected to contact-dependent T cell survival. This "dynamic immunological synapse" with distinct signaling sectors enables moving T cells to serially sample antigen-presenting cells and resident tissue cells and thus to collect information along the way. In contrast to homeostatic contacts, recognition of the cognate antigen led to long-lasting T cell/DC interaction with T cell rounding, disintegration of the uropod, T cell polarization towards the DC, and the formation of a symmetrical contact plane. However, the polarity of the continuously migrating DC remained intact and T cells aggregated within the DC uropod, an interesting cellular compartment potentially involved in T cell activation and regulation of the immune response. Taken together, 3D collagen facilitates high resolution morphological studies of T cell function under realistic, in vivo-like conditions.}, subject = {T-Lymphozyt}, language = {en} }