@phdthesis{Roeger2007, author = {R{\"o}ger, Cornelia}, title = {Bioinspired Light-Harvesting Zinc Chlorin Rod Aggregates Powered by Peripheral Chromophores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26760}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Artificial light-harvesting (LH) systems have been obtained by self-assembly of naphthalene diimide-functionalized zinc chlorin dyads and triad in nonpolar, aprotic solvents. UV-vis, CD, and steady-state emission spectroscopy as well as atomic force microscopy showed that rod-like structures are formed by excitonic interactions of zinc chlorin units, while the appended naphthalene diimide dyes do not aggregate at the periphery of the cylinders. In all cases, photoexcitation of the enveloping naphthalene diimides at 540 and 620 nm, respectively, was followed by highly efficient energy-transfer processes to the inner zinc chlorin backbone, as revealed by time-resolved fluorescence spectroscopy on the picosecond time-scale. As a consequence, the LH efficiencies of zinc chlorin rod aggregates were increased by up to 63\%. The effective utilization of solar energy recommends these biomimetic systems for an application in electronic materials on the nanoscale.}, subject = {Farbstoff}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Steeger2015, author = {Steeger, Markus}, title = {Energy and Charge Transfer in Donor-Acceptor Substituted Hexaarylbenzenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112520}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The focus of this work was the investigation of energy transfer between charge transfer states. For this purpose the multidimensional chromophores HAB-S, HAB-A, B1 and B2 were synthesised, each consisting of three electron donor and three electron acceptor redox centres linked symmetrically or asymmetrically by the hexaarylbenzene framework. Triarylamines represent in all these compounds the electron donors, whereas the electron poor centres were triarylboranes in B1 and B2 and PCTM centres in HAB-S and HAB-A, respectively. The hexaarylbenzenes were obtained by cobalt catalysed cyclotrimerisation of the respective tolan precursors. In addition, Star was synthesised, which consists of a central PCTM linked to three triarylamin centres by tolan bridging units in a star-like configuration. The hexaarylbenzene S1a/b substituted with six squaraine chromophores could not be realised. It is assumed that the cyclotrimerisation catalyst Co2(CO)8 does not tolerate the essential hydroxyl groups in the tolan precursor S2a. The alternative reaction pathway to execute the cyclotrimerisation reaction first and introduce the hydroxyl groups thereafter failed as well, because the required hexaarylbenzene substituted by six semisquaric acid moieties could not be synthesised. However, energy transfer interactions could be investigated in the tolan precursor S2a with two squaraine units to obtain information about the electronic coupling provided by the tolan bridge. For all multidimensional compounds model molecules were synthesised with only a single donor-acceptor pair (B3, Star-Model and HAB-Model). This allows a separate consideration of energy and charge transfer processes. It has to be stressed that in all before mentioned multidimensional compounds the "through bond" energy transfer interaction between neighbouring IV-CT states is identical to a transfer of a single electron between two redox centres of the same kind (e.g. TAA -> TAA+). The latter can be analysed by electron transfer theory. This situation is observed when the two IV-CT states transferring energy share one redox centre. All compounds containing PCTM centres were characterised by paramagnetic resonance spectroscopy. Thereby, a weak interaction between the three PCTM units in HAB-S and HAB-A was observed. In addition, when oxidising Star-Model, a strongly interacting singlet or triplet state was obtained. In contrast, signals corresponding to a weakly interacting biradical were obtained for HAB-Model+. This indicates a strong electronic coupling between the redox centres provided by the tolan bridge and a weak coupling when linked by the hexaarylbenzene. This trend is supported by UV/Vis/NIR absorption measurements. The analysis of the observed IV-CT absorption bands by electron transfer theory reveals a weak electronic coupling of V = 340 cm-1 in HAB-Model and a distinctly stronger coupling of V = 1190-2900 cm-1 in Star-Model. In the oxidised HAB-S+, Star+ and Star-Model+ a charge transfer reversed from that of the neutral species, that is, from the PCTM radical to the electron poorer cationic TAA centre, was observed by spectroelectrochemistry. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed, induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (tau = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together the identity between energy transfer and electron transfer in the specific systems were made apparent. It has to be remarked that neither energy transfer nor charge transfer theory can account for the very fast energy transfer in Star. The electrochemical and photophysical properties of B1 and B2 were investigated by cyclic voltammetry, absorption and fluorescence measurements and were compared to B3 with only one neighbouring donor-acceptor pair. For the asymmetric B2 CV measurements show three oxidations as well as three reduction peaks whose peak separation is greatly influenced by the conducting salt due to ion-pairing and shielding effects. Consequently, peak separations cannot be interpreted in terms of electronic couplings in the generated mixed valence species. Transient absorption, fluorescence solvatochromism and absorption spectra show that charge transfer states from the amine to the boron centres are generated after optical excitation. The electronic donor-acceptor interaction is weak though as the charge transfer has to occur predominantly through space. The electronic coupling could not be quantified as the CT absorption band is superimposed by pi-pi* transitions localised at the amine and borane centres. However, this trend is in good agreement to the weak coupling measured for HAB-Model. Both transient absorption and fluorescence upconversion measurements indicate an ultrafast stabilisation of the charge transfer state in B1- B3 similar to the corresponding observations in HAB-S and Star. Moreover, the excitation energy of the localised excited charge transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within fluorescence lifetime (ca. 60 ns). This was proved by steady state fluorescence anisotropy measurements, which further indicate a symmetry breaking in the superficially symmetric HAB. Anisotropic fluorescence upconversion measurements confirm this finding and reveal a time constant of tau = 2-3 ps for the energy transfer in B1 and B2. It has to be stressed that, although the geometric structures of B1 and HAB-S are both based on the same framework and furthermore the neighbouring CT states show in both cases similar Coulomb couplings and negligible "through bond" couplings, very fast energy transfer is observed in B1 whereas in HAB-S the energy is not redistributed within the excited state lifetime. To explain this, it has to be kept in mind that the energy transfer and the relaxation of the CT state are competing processes. The latter is influenced moreover by the solvent viscosity. Hence, it is assumed that this discrepancy in energy transfer behaviour is caused by monitoring the excited state in solvents of varying viscosity. Adding fluoride ions causes the boron centres to lose their acceptor ability due to complexation. Consequently, the charge transfer character in the donor-acceptor chromophores vanishes which could be observed in both the absorption and fluorescence spectra. However, the fluoride sensor ability of the boron centre is influenced strongly by the moisture content of the solvent possibly due to hydrogen bonding of water to the fluoride anions. UV/Vis/NIR absorption measurements of S2a show a red-shift by 1800 cm-1 of the characteristic squarain band compared to the model compound S20. From exciton theory a Coulomb coupling of V = 410 cm-1 is calculated which cannot account for this strong spectral shift. Consequently, "through-bond" interactions have to contribute to the strong communication between the two squaraine chromophores in S2a. This is in accordance with the strong charge transfer coupling calculated for the tolan spacer in Star-Model.}, subject = {Energietransfer }, language = {en} }