@phdthesis{AriasLoza2008, author = {Arias-Loza, Anahi-Paula}, title = {Hormone Replacement Therapy and cardiovascular disease: Differential effects of the regimes Medroxyprogesterone Acetate plus 17ß- estradiol and unopposed 17ß- estradiol}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27660}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {A rising percentage of women with risk factors for cardiovascular disease (CVD) reach menopause and experience postmenopausal symptoms. In consequence they require assessment concerning the appropriate combination and safety of a hormone replacement therapy. Clinical trials using the combination of equine estrogens and medroxyprogesterone acetate (MPA) reported an increased risk of thromboembolic events and no cardiovascular protective effects in women receiving this type of hormone replacement therapy. However unopposed estradiol and different regimes estrogens/progestins in vitro and in animal studies have proved to be beneficial for the cardiovascular system. Thus it is possible that the negative outcomes of the clinical trials are an exclusive feature of the regime equine estrogens plus MPA. The present study was initiated to evaluate the cardiovascular effects and possible mechanism of damage of the regime MPA plus 17ß-estradiol in comparison to unopposed 17ß-estradiol during cardiac disease. The role of 17ß-estradiol and MPA during left ventricular dysfunction and chronic heart failure was studied in female Wistar rats that received myocardial infarction. After 8 weeks of treatment the combination of MPA plus estradiol aggravated left ventricular remodelling and dysfunction as judged by increased heart weight, elevated left ventricular end diastolic pressure and decreased left ventricular fractional shortening, effects that were accompanied by increase left ventricular oxidative stress and expression of rac 1 and p67phox regulatory subunits of the NADPH oxidase. In contrast ovariectomy as well as 17ß- estradiol supplementation conferred neutral effects on cardiac function and remodelling post myocardial infarction. Suggesting that the aggravating symptoms of the regime MPA plus 17ß -estradiol are inherent to this pharmacological regime and are not a class effect of the progesterone receptor ligands and are neither due to inhibition of estradiol beneficial effects. Considering that aldosterone plays an important role in the development and aggravation of cardiovascular disease the cardiovascular effects of MPA plus 17ß -estradiol was studied in a model of mineralocorticoid receptor activation and compared to the effects of regimes based in drospirenone, a new progestin with antimineralocorticoid properties. The complex pattern of cardiovascular injury in ovariectomized Wistar rats induced by 8 weeks of continuous chronic aldosterone infusion and high-salt diet was significantly attenuated in sham-ovariectomized rats and by coadministration of 17 ß-estradiol in ovariectomized animals. The beneficial role of 17 ß-estradiol on blood pressure, cardiac hypertrophy, vascular osteopontin expression and perivascular fibrosis was completely abrogated by coadministration of MPA. In contrast, drospirenone was either neutral or additive to 17 ß-estradiol in protecting against aldosterone salt-induced cardiovascular injury and inflammation. Taking into account that the kidney plays a major role for the development and aggravation of hypertension a further characterization of fluid balance, renal morphology and renal gene expression in the aldosterone salt treated rats was conducted. Aldo-salt treatment resulted in remnant kidney hypertrophy without structural damage, effects that were not modified by 17 ß-estradiol. However combination of MPA with 17 ß-estradiol enhanced kidney hypertrophy, fluid turnover, renal sodium retention and potassium excretion and was associated with increased renal ENaC expression, extensive renal lesions, tubular damage and enhanced p67phox expression and protein tyrosin nitrosylation. Different to the protective effects of drospirenone that included a complete blockade of kidney hypertrophy and sodium retention and enhanced renal expression of angiotensin II type-2 receptors. Therefore the loss of 17 ß-estradiol cardiovascular beneficial effects and the renal harmful effects in the aldosterone salt treated rats receiving MPA can not be extrapolated to other progestins. Indeed drospirenone conferred protective effects due to its antimineralocorticoid properties. In conclusion, the choice of specific synthetic progestins has profound implications on the development of cardiovascular and renal injury; MPA aggravated cardiac disease, which contributes to explain the adverse outcomes of clinical trials on the prevention of cardiovascular disease by combined estrogen and MPA treatment.}, subject = {Estradiol}, language = {en} } @phdthesis{Ganesan2014, author = {Ganesan, Jayavarshni}, title = {The role of microRNA-378 in cardiac hypertrophy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100918}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {MicroRNAs are endogenous ≈22 nt long non coding RNA molecules that modulate gene expression at the post transcriptional level by targeting mRNAs for cleavage or translational repression. MicroRNA-mRNA interaction involves a contiguous and perfect pairing within complementary sites usually in the 3' UTR of the target mRNA. Heart failure is associated with myocyte hypertrophy and death, due to compensatory pathological remodeling and minimal functional repair along with microRNA deregulation. In this study, we identified candidate microRNAs based on their expression strength in cardiomyocytes and by their ability to regulate hypertrophy. Expression profiling from early and late stages of heart failure showed several deregulated microRNAs. Of these microRNAs, miR-378 emerged as a potentially interesting microRNA that was highly expressed in the mouse heart and downregulated in the failing heart. Antihypertrophic activity of miR-378 was first observed by screening a synthetic miR library for morphologic effects on cardiomyocytes, and validated in vitro proving the tight control of hypertrophy by this miR. We combined bioinformatic target prediction analysis and microarray analysis to identify the targets of miR-378. These analyses suggested that factors of the MAP kinase pathway were enriched among miR-378 targets, namely MAPK1 itself (also termed ERK2), the insulin-like growth factor receptor 1 (IGF1R), growth factor receptor bound protein 2 (GRB2) and kinase suppressor of ras 1 (KSR1). Regulation of these targets by miR-378 was then confirmed by mRNA and protein expression analysis. The use of luciferase reporter constructs with natural or mutated miR-378 binding sites further validated these four proteins as direct targets of miR-378. RNA interference with MAPK1 and the other three targets prevented the prohypertrophic effect of antimiR-378, suggesting that they functionally relate to miR-378. In vivo restoration of disease induced loss of miR-378 in a pressure overload mouse model of hypertrophy using adeno associated virus resulted in partial attenuation cardiac hypertrophy and significant improvement in cardiac function along with reduced expression of the four targets in heart. We conclude from these findings that miR-378 is an antihypertrophic microRNA in cardiomyocytes, and the main mechanism underlying this effect is the suppression of the MAP kinase-signaling pathway on four distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted AAV-miR-378 may prove as an effective therapeutic strategy in myocardial disease.}, subject = {Hypertrophie}, language = {en} } @phdthesis{Sahiti2022, author = {Sahiti, Floran}, title = {Myocardial Work - Application and Clinical Characterization of a New Echocardiographic Tool}, doi = {10.25972/OPUS-28226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282261}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {1 Summary Left ventricular (LV) ejection fraction (EF) and global longitudinal strain (GLS) are the most commonly used measures of LV function. Yet, they are highly dependent on loading conditions since higher afterload yields lower systolic deformation and thereby a lower LVEF and GLS - despite presumably unchanged LV myocardial contractile strength. Invasive pressure-volume loop measurements represent the reference standard to assess LV function, also considering loading conditions. However, this procedure cannot be used in serial investigations or large sample populations due to its invasive nature. The novel concept of echocardiography-derived assessment of myocardial work (MyW) is based on LV pressure-strain loops, may be a valuable alternative to overcome these challenges, and may also be used with relative ease in large populations. As MyW also accounts for afterload, it is considered less load-dependent than LVEF and GLS. The current PhD work addresses the application and clinical characterization of MyW, an innovative echocardiographic tool. As the method is new, we focused on four main topics: (a) To establish reference values for MyW indices, i.e., Global Work Index (GWI), Global Constructive Work (GCW), Global Wasted Work (GWW), and Global Work Efficiency (GWE); we addressed a wide age range and evaluated the association of MyW indices with age, sex and other clinical and echocardiography parameters in apparently cardiovascular healthy individuals. (b) To investigate the impact of cardiovascular (CV) risk factors on MyW indices and characterize the severity of subclinical LV deterioration in the general population. (c) To assess the association of the LV geometry, i.e., LV mass and dimensions, with MyW indices. (d) To evaluate in-hospital dynamics of MyW indices in patients hospitalized for acute heart failure (AHF). For the PhD thesis, we could make use of two larger cohorts: The STAAB population-based cohort study prospectively recruited and phenotyped a representative sample (5,000 individuals) of the general population of the City of W{\"u}rzburg, aged 30-79 years and free from symptomatic heart failure at the time of inclusion. We focused on the first half of the study sample (n=2473 individuals), which fulfilled the anticipated strata regarding age and sex. The Acute Heart Failure (AHF) Registry is a prospective clinical registry recruiting and phenotyping consecutive patients admitted for decompensated AHF to the Department of Medicine I, University Hospital W{\"u}rzburg, and observing the natural course of the disease. The AHF Registry focuses on the pathophysiological understanding, particularly in relation to the early phase after cardiac decompensation, with the aim to improve diagnosis and better-tailored treatment of patients with AHF. For the current study, we concentrated on patients who provided pairs of echocardiograms acquired early after index hospital admission and prior to discharge. The main findings of the PhD thesis were: From the STAAB cohort study, we determined the feasibility of large-scale MyW derivation and the accuracy of the method. We established reference values for MyW indices based on 779 analyzable, apparently healthy participants (mean age 49 ± 10 years, 59\% women), who were in sinus rhythm, free from CV risk factors or CV disease, and had no significant LV valve disease. Apart from GWI, there were no associations of other MyW indices with sex. Further, we found a disparate association with age, where MyW showed stable values until the age of 45 years, with an upward shift occurring beyond the age of 45. A higher age decade was associated with higher GWW and lower GWE, respectively. MyW indices only correlated weakly with common echocardiographic parameters, suggesting that MyW may add incremental information to clinically established parameters. Further analyses from the STAAB cohort study contributed to a better understanding of the impact of CV risk factors on MyW indices and the association of LV geometry with LV performance. We demonstrated that CV risk factors impacted selectively on GCW and GWW. Hypertension appears to profoundly compromise the work of the myocardium, in particular, by increasing both GCW and GWW. The LV in hypertension seems to operate at a higher energy level yet lower efficiency. Other classical CV risk factors (Diabetes mellitus, Obesity, Dyslipidemia, Smoking) - independent of blood pressure - impacted consistently and adversely on GCW but did not affect GWW. Further, all CV risk factors affected GWE adversely. We observed that any deviation from a normal LV geometric profile was associated with alterations on MyW. Of note, MyW was sensitive to early changes in LV mass and dimensions. Individuals with normal LV geometry yet established arterial hypertension exhibited a MyW pattern that is typically found in LV hypertrophy. Therefore, such a pattern might serve as an early sign of myocardial damage in hypertensive heart disease and might aid in risk stratification and primary prevention. From the AHF Registry, we selected individuals with serial in-hospital echocardiograms and described in-hospital changes in myocardial performance during recompensation. In patients presenting with a reduced ejection fraction (HFrEF), decreasing N-terminal pro-natriuretic peptide (NT-proBNP) levels as a surrogate of successful recompensation were associated with an improvement in GCW and GWI and consecutively in GWE. In contrast, in patients presenting with a preserved ejection fraction (HFpEF), there was no significant change in GCW and GWI. However, unsuccessful recompensation, i.e., no change or an increase in NT-proBNP levels, was associated with an increase in GWW. This suggests a differential myocardial response to de- and recompensation depending on the HF phenotype. Further, GWW as a surrogate of inappropriate LV energy consumption was elevated in all patients with AHF (compared to reference values) and was not associated with conventional markers as LVEF or NT-proBNP. In an exploratory analysis, GWW predicted the risk of death or rehospitalization within six months after discharge. Hence, GWW might carry incremental information beyond conventional markers of HF severity.}, language = {en} }