@phdthesis{Schlichting2015, author = {Schlichting, Matthias}, title = {Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used. During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state. Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day. But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals. In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity. Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions.}, subject = {Taufliege}, language = {en} } @phdthesis{Tian2019, author = {Tian, Yuehui}, title = {Characterization of novel rhodopsins with light-regulated cGMP production or cGMP degradation}, doi = {10.25972/OPUS-16814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168143}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Photoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules with flavin (vitamin B-related) nucleotides as chromophore; while two classes of yellow and red light-sensitive proteins consist of xanthopsin and phytochrome, respectively. Lastly, as uniquely integral membrane proteins, the class of rhodopsins can usually sense over a wide absorption spectrum, ranging from ultra-violet to green and even red light. Rhodopsins can be further divided into two types, i.e., microbial (type I) and animal (type II) rhodopsins. Rhodopsins consist of the protein opsin and the covalently bound chromophore retinal (vitamin A aldehyde). In this thesis, I focus on identification and characterization of novel type I opsins with guanylyl cyclase activity from green algae and a phosphodiesterase opsin from the protist Salpingoeca rosetta. Until 2014, all known type I and II rhodopsins showed a typical structure with seven transmembrane helices (7TM), an extracellular N-terminus and a cytosolic C-terminus. The proven function of the experimentally characterized type I rhodopsins was membrane transport of ions or the coupling to a transducer which enables phototaxis via a signaling chain. A completely new class of type I rhodopsins with enzymatic activity was identified in 2014. A light-activated guanylyl cyclase opsin was discovered in the fungus Blastocladiella emersonii which was named Cyclop (Cyclase opsin) by Gao et al. (2015), after heterologous expression and rigorous in-vitro characterization. BeCyclop is the first opsin for which an 8 transmembrane helices (8TM) structure was demonstrated by Gao et al. (2015). Earlier (2004), a novel class of enzymatic rhodopsins was predicted to exist in C. reinhardtii by expressed sequence tag (EST) and genome data, however, no functional data were provided up to now. The hypothetical rhodopsin included an N-terminal opsin domain, a fused two-component system with histidinekinase and response regulator domain, and a C-terminal guanylyl cyclase (GC) domain. This suggested that there could be a biochemical signaling cascade, integrating light-induction and ATP-dependent phosphate transfer, and as output the light-sensitive cGMP production. One of my projects focused on characterizing two such opsins from the green algae Chlamydomonas reinhardtii and Volvox carteri which we then named 2c-Cyclop (two-component Cyclase opsin), Cr2c-Cyclop and Vc2c-Cyclop, respectively. My results show that both 2c-Cyclops are light-inhibited GCs. Interestingly, Cr2c-Cyclop and Vc2c-Cyclop are very sensitive to light and ATP-dependent, whereby the action spectra of Cr2c-Cyclop and Vc2c-Cyclop peak at ~540 nm and ~560 nm, respectively. More importantly, guanylyl cyclase activity is dependent on continuous phosphate transfer between histidine kinase and response regulator. However, green light can dramatically block phosphoryl group transfer and inhibit cyclase activity. Accordingly, mutation of the retinal-binding lysine in the opsin domain resulted in GC activity and lacking light-inhibition. A novel rhodopsin phosphodiesterase from the protist Salpingoeca rosetta (SrRhoPDE) was discovered in 2017. However, the previous two studies of 2017 claimed a very weak or absent light-regulation. Here I give strong evidence for light-regulation by studying the activity of SrRhoPDE, expressed in Xenopus laevis oocytes, in-vitro at different cGMP concentrations. Surprisingly, hydrolysis of cGMP shows a ~100-fold higher turnover than that of cAMP. Light can enhance substrate affinity by decreasing the Km value for cGMP from 80 μM to 13 μM, but increases the maximum turnover only by ~30\%. In addition, two key single mutants, SrRhoPDE K296A or K296M, can abolish the light-activation effect by interrupting a covalent bond of Schiff base type to the chromophore retinal. I also demonstrate that SrRhoPDE shows cytosolic N- and C- termini, most likely via an 8-TM structure. In the future, SrRhoPDE can be a potentially useful optogenetic tool for light-regulation of cGMP concentration, possibly after further improvements by genetic engineering.}, language = {en} }