@phdthesis{Behne2024, author = {Behne, Robert Stefan Friedrich}, title = {Development Of A Human iPSC-Derived Cortical Neuron Model Of Adaptor- Protein-Complex-4-Deficiency}, doi = {10.25972/OPUS-35139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Adaptor-protein-4-deficiency (AP-4-deficiency) is an autosomal-recessive childhood- onset form of complicated hereditary spastic paraplegia (HSP) caused by bi-allelic loss- of-function mutations in one of the four subunits of the AP-4-complex. These four conditions are named SPG47 (AP4B1, OMIM \#614066), SPG50 (AP4M1, OMIM \#612936), SPG51 (AP4E1, OMIM \#613744) and SPG52 (AP4S1, OMIM \#614067), respectively and all present with global developmental delay, progressive spasticity and seizures. Imaging features include a thinning of the corpus callosum, ventriculomegaly and white matter changes. AP-4 is a highly conserved heterotetrameric complex, which is responsible for polarized sorting of transmembrane cargo including the autophagy- related protein 9 A (ATG9A). Loss of any of the four subunits leads to an instable complex and defective sorting of AP-4-cargo. ATG9A is implicated in autophagosome formation and neurite outgrowth. It is missorted in AP-4-deficient cells and CNS-specific knockout of Atg9a in mice results in a phenotype reminiscent of AP-4-deficiency. However, the AP-4-related cellular phenotypes including ATG9A missorting have not been investigated in human neurons. Thus, the aim of this study is to provide the first human induced pluripotent stem cell- derived (iPSC) cortical neuron model of AP-4-deficiency to explore AP-4-related phenotypes in preparation for a high-content screening. Under the hypothesis that AP-4- deficiency leads to ATG9A missorting, elevated ATG9A levels, impaired autophagy and neurite outgrowth in human iPSC-derived cortical neurons, in vitro biochemical and imaging assays including automated high-content imaging and analysis were applied. First, these phenotypes were investigated in fibroblasts from three patients with compound heterozygous mutations in the AP4B1 gene and their sex-matched parental controls. The same cell lines were used to generate iPSCs and differentiate them into human excitatory cortical neurons. This work shows that ATG9A is accumulating in the trans-Golgi-network in AP-4- deficient human fibroblasts and that ATG9A levels are increased compared to parental controls and wild type cells suggesting a compensatory mechanism. Protein levels of the AP4E1-subunit were used as a surrogate marker for the AP-4-complex and were decreased in AP-4-deficient fibroblasts with co-immunoprecipitation confirming the instability of the complex. Lentiviral re-expression of the AP4B1-subunit rescues this corroborating the fact that a stable AP-4-complex is needed for ATG9A trafficking. Surprisingly, autophagic flux was present in AP-4-deficient fibroblasts under nutrient- rich and starvation conditions. These phenotypic markers were evaluated in iPSC-derived cortical neurons and here, a robust accumulation of ATG9A in the juxtanuclear area was seen together with elevated ATG9A protein levels. Strikingly, assessment of autophagy markers under nutrient-rich conditions showed alterations in AP-4-deficient iPSC- derived cortical neurons indicating dysfunctional autophagosome formation. These findings point towards a neuron-specific impairment of autophagy and need further investigation. Adding to the range of AP-4-related phenotypes, neurite outgrowth and branching are impaired in AP-4-deficient iPSC-derived cortical neurons as early as 24h after plating and together with recent studies point towards a distinct role of ATG9A in neurodevelopment independent of autophagy. Together, this work provides the first patient-derived neuron model of AP-4-deficiency and shows that ATG9A is sorted in an AP-4-dependent manner. It establishes ATG9A- related phenotypes and impaired neurite outgrowth as robust markers for a high-content screening. This disease model holds the promise of providing a platform to further study AP-4-deficiency and to search for novel therapeutic targets.}, subject = {Adaptorproteine}, language = {en} } @phdthesis{Klein2021, author = {Klein, Thomas}, title = {Establishing an in vitro disease model for Fabry Disease using patient specific induced pluripotent stem cell-derived sensory neurons}, doi = {10.25972/OPUS-19970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (GLA), leading to intracellular accumulations of globotriaosylceramide (Gb3). Acral burning pain, which can be triggered by heat, fever or physical activity is an early hallmark of FD and greatly reduces patients' quality of life. The pathophysiology of FD pain is unknown and research is hindered by the limited in vivo availability of suitable human biomaterial. To overcome this obstacle, we generated induced pluripotent stem cells (iPSC) from one female and two male patients with a differing pain phenotype, and developed a refined differentiation protocol for sensory neurons to increase reliability and survival of these neurons, serving as an in vitro disease model. Neurons were characterized for the correct neuronal subtype using immunocytochemistry, gene expression analysis, and for their functionality using electrophysiological measurements. iPSC and sensory neurons from the male patients showed Gb3 accumulations mimicking the disease phenotype, whereas no Gb3 depositions were detected in sensory neurons derived from the female cell line, likely caused by a skewed X-chromosomal inactivation in favor of healthy GLA. Using super-resolution imaging techniques we showed that Gb3 is localized in neuronal lysosomes of male patients and in a first experiment using dSTORM microscopy we were able to visualize the neuronal membrane in great detail. To test our disease model, we treated the neurons with enzyme replacement therapy (ERT) and analyzed its effect on the cellular Gb3 load, which was reduced in the male FD-lines, compared to non-treated cells. We also identified time-dependent differences of Gb3 accumulations, of which some seemed to be resistant to ERT. We also used confocal Ca2+ imaging to investigate spontaneous neuronal network activity, but analysis of the dataset proofed to be difficult, nonetheless showing a high potential for further investigations. We revealed that neurons from a patient with pain pain are more easily excitable, compared to cells from a patient without pain and a healthy control. We provide evidence for the potential of patient-specific iPSC to generate a neuronal in vitro disease model, showing the typical molecular FD phenotype, responding to treatment, and pointing towards underlying electrophysiological mechanisms causing different pain phenotypes. Our sensory neurons are suitable for state-of-the-art microscopy techniques, opening new possibilities for an in-depth analysis of cellular changes, caused by pathological Gb3 accumulations. Taken together, our system can easily be used to investigate the effect of the different mutations of GLA on a functional and a molecular level in affected neurons.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @article{McNeillZieglerRadtkeetal.2020, author = {McNeill, Rhiannon V. and Ziegler, Georg C. and Radtke, Franziska and Nieberler, Matthias and Lesch, Klaus‑Peter and Kittel‑Schneider, Sarah}, title = {Mental health dished up — the use of iPSC models in neuropsychiatric research}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02197-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235666}, pages = {1547-1568}, year = {2020}, abstract = {Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.}, language = {en} } @phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} }