@phdthesis{Kuells2000, author = {K{\"u}lls, Christoph}, title = {Groundwater of the North-Western Kalahari, Namibia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {A quantitative model of groundwater flows contributing to the Goblenz state water scheme at the north-western fringe of the Kalahari was developed within this study. The investigated area corresponds to the Upper Omatako basin and encompasses an outer mountainous rim and sediments of the Kalahari sand desert in the centre. This study revealed the eminent importance of the mountainous rim for the water balance of the Kalahari, both in terms of surface and ground water. A hydrochemical subdivision of groundwater types in the mountain rim around the Kalahari was derived from cluster analysis of hydrochemical groundwater data. The western and south-western secondary aquifers within rocks of the Damara Sequence, the Otavi Mountain karst aquifers of the Tsumeb and Abenab subgroups as well as the Waterberg Etjo sandstone aquifer represent the major hydrochemical groups. Ca/Mg and Sr/Ca ratios allowed to trace the groundwater flow from the Otavi Mountains towards the Kalahari near Goblenz. The Otavi Mountains and the Waterberg were identified as the main recharge areas showing almost no or only little isotopic enrichment by evaporation. Soil water balance modelling confirmed that direct groundwater recharge in hard-rock environments tends to be much higher than in areas covered with thick Kalahari sediments. According to the water balance model average recharge rates in hard-rock exposures with only thin sand cover are between 0.1 and 2.5 \% of mean annual rainfall. Within the Kalahari itself very limited recharge was predicted (< 1 \% of mean annual rainfall). In the Upper Omatako basin the highest recharge probability was found in February in the late rainfall season. The water balance model also indicated that surface runoff is produced sporadically, triggering indirect recharge events. Several sinkholes were discovered in the Otavi Foreland to the north of Goblenz forming short-cuts to the groundwater table and preferential recharge zones. Their relevance for the generation of indirect recharge could be demonstrated by stable isotope variations resulting from observed flood events. Within the Kalahari basin several troughs were identified in the pre-Kalahari surface by GIS-based analyses. A map of saturated thickness of Kalahari sediments revealed that these major troughs are partly saturated with groundwater. The main trough, extending from south-west to north-east, is probably connected to the Goblenz state water scheme and represents a major zone of groundwater confluence, receiving groundwater inflows from several recharge areas in the Upper Omatako basin. As a result of the dominance of mountain front recharge the groundwater of the Kalahari carries an isotopic composition of recharge at higher altitudes. The respective percentages of inflow into the Kalahari from different source areas were determined by a mixing-cell approach. According to the mixing model Goblenz receives most of its inflow (70 to 80 \%) from a shallow Kalahari aquifer in the Otavi Foreland which is connected to the Otavi Mountains. Another 15 to 10 \% of groundwater inflow to the Kalahari at Goblenz derive from the Etjo sandstone aquifer to the south and from inflow of a mixed component. In conclusion, groundwater abstraction at Goblenz will be affected by measures that heavily influence groundwater inflow from the Otavi Mountains, the Waterberg, and the fractured aquifer north of the Waterberg.}, subject = {Kalahari}, language = {en} } @article{LassmannPreylowskiSchloegletal.2013, author = {Lassmann, Michael and Preylowski, Veronika and Schl{\"o}gl, Susanne and Schoenahl, Fr{\´e}d{\´e}ric and J{\"o}rg, Gerhard and Samnick, Samuel and Buck, Andreas K.}, title = {Is the Image Quality of I-124-PET Impaired by an Automatic Correction of Prompt Gammas?}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0071729}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96863}, year = {2013}, abstract = {Objectives The aim of this study is to evaluate the quality of I-124 PET images with and without prompt gamma compensation (PGC) by comparing the recovery coefficients (RC), the signal to noise ratios (SNR) and the contrast to F-18 and Ga-68. Furthermore, the influence of the PGC on the quantification and image quality is evaluated. Methods For measuring the image quality the NEMA NU2-2001 PET/SPECT-Phantom was used containing 6 spheres with a diameter between 10 mm and 37 mm placed in water with different levels of background activity. Each sphere was filled with the same activity concentration measured by an independently cross-calibrated dose calibrator. The "hot" sources were acquired with a full 3D PET/CT (Biograph mCT®, Siemens Medical USA). Acquisition times were 2 min for F-18 and Ga-68, and 10 min for I-124. For reconstruction an OSEM algorithm was applied. For I-124 the images were reconstructed with and without PGC. For the calculation of the RCs the activity concentrations in each sphere were determined; in addition, the influence of the background correction was studied. Results The RCs of Ga-68 are the smallest (79\%). I-124 reaches similar RCs (87\% with PGC, 84\% without PGC) as F-18 (84\%). showing that the quantification of I-124 images is similar to F-18 and slightly better than Ga-68. With background activity the contrast of the I-124 PGC images is similar to Ga-68 and F-18 scans. There was lower background activity in the I-124 images without PGC, which probably originates from an overcorrection of the scatter contribution. Consequently, the contrast without PGC was much higher than with PGC. As a consequence PGC should be used for I-124. Conclusions For I-124 there is only a slight influence on the quantification depending on the use of the PGC. However, there are considerable differences with respect to I-124 image quality.}, language = {en} } @article{WenzArndtSamnick2022, author = {Wenz, Jan and Arndt, Felix and Samnick, Samuel}, title = {A new concept for the production of \(^{11}\)C-labelled radiotracers}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {7}, journal = {EJNMMI Radiopharmacy and Chemistry}, doi = {10.1186/s41181-022-00159-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300731}, year = {2022}, abstract = {Background The GMP-compliant production of radiopharmaceuticals has been performed using disposable units (cassettes) with a dedicated synthesis module. To expand this "plug 'n' synthesize" principle to a broader scope of modules we developed a pressure controlled setup that offers an alternative to the usual stepper motor controlled rotary valves. The new concept was successfully applied to the synthesis of N-methyl-[\(^{11}\)C]choline, L-S-methyl-[\(^{11}\)C]methionine and [11C]acetate. Results The target gas purification of cyclotron produced [\(^{11}\)C]CO\(_2\) and subsequent conversion to [\(^{11}\)C]MeI was carried out on a TRACERlab Fx C Pro module. The labelling reactions were controlled with a TRACERlab Fx FE module. With the presented modular principle we were able to produce N-methyl-[\(^{11}\)C]choline and L-S-methyl-[\(^{11}\)C]methionine by loading a reaction loop with neat N,N'-dimethylaminoethanol (DMAE) or an ethanol/water mixture of NaOH and L-homocysteine (L-HC), respectively and a subsequent reaction with [\(^{11}\)C]MeI. After 18 min N-methyl-[\(^{11}\)C]choline was isolated with 52\% decay corrected yield and a radiochemical purity of > 99\%. For L-S-methyl-[\(^{11}\)C]methionine the total reaction time was 19 min reaction, yielding 25\% of pure product (> 97\%). The reactor design was used as an exemplary model for the technically challenging [\(^{11}\)C]acetate synthesis. The disposable unit was filled with 1 mL MeMgCl (0.75 M) in tetrahydrofuran (THF) bevore [\(^{11}\)C]CO\(_2\) was passed through. After complete release of [\(^{11}\)C]CO\(_2\) the reaction mixture was quenched with water and guided through a series of ion exchangers (H\(^+\), Ag\(^+\) and OH\(^-\)). The product was retained on a strong anion exchanger, washed with water and finally extracted with saline. The product mixture was acidified and degassed to separate excess [\(^{11}\)C]CO\(_2\) before dispensing. Under these conditions the total reaction time was 18 ± 2 min and pure [\(^{11}\)C]acetate (n = 10) was isolated with a decay corrected yield of 51 ± 5\%. Conclusion Herein, we described a novel single use unit for the synthesis of carbon-11 labelled tracers for preclinical and clinical applications of N-methyl-[\(^{11}\)C]choline, L-S-methyl-[\(^{11}\)C]methionine and [11C]acetate.}, language = {en} }