@phdthesis{Forster2006, author = {Forster, Wilhelmina Alison}, title = {Mechanisms of cuticular uptake of xenobiotics into living plants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21240}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {The objective of this Thesis was to progress the understanding of the mechanisms of cuticular uptake into living plant foliage, thereby enabling uptake of important compounds such as pesticides and pollutants to be modelled. The uptake of three model compounds, applied in the presence and absence of surfactants, into the leaves of three plant species (Chenopodium album L., Hedera helix L. and Stephanotis floribunda Brongn) was determined. The results with 2-deoxy-D-glucose (DOG), 2,4-dichlorophenoxy-acetic acid (2,4-D) and epoxiconazole in the presence of surfactants (the polyethylene glycol monododecyl ethers C12EO3, C12EO6, C12EO10, and a trisiloxane ethoxylate with mean ethylene oxide (EO) content of 7.5, all used at one equimolar concentration) illustrated that the initial dose (nmol mm-2) of xenobiotic applied to plant foliage was a strong positive determinant of uptake. Using this new approach for whole plant uptake, uptake on a per unit area basis was found to be related to initial dose of xenobiotic applied, by an equation of the form: Uptake(nmol mm-2) = a [ID]b at time t = 24 hours, where ID is the initial dose or the mass of xenobiotic applied per unit area (M(nmol xenobiotic applied)/A(droplet spread area)). Total mass uptake can then be calculated from an equation of the form: Total Uptake(nmol) = a [ID]b.A. In order to verify this relationship, further studies determined the uptake of three pesticides, applied as commercial and model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results confirmed that the initial dose (nmol mm-2) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. In a novel approach, further studies used this relationship (nmol mm-2 uptake versus ID; termed the uptake ratio) to establish the relative importance of species, active ingredient (AI), AI concentration (g L-1) and surfactant to uptake. Species, AI, its concentration, and surfactant all significantly affected the uptake ratio. Overall, 88\% of the deviance could be explained. More useful was the analysis of the individual xenobiotics, where the models explained 83\%, 85\%, and 94\% of the variance in uptake ratio for DOG, 2,4-D, and epoxiconazole, respectively. In all cases, species, surfactant, and AI concentration significantly affected the uptake ratio. However, there were differences in the relative importance of these factors among the xenobiotics studied. Concentration of AI increased in importance with increasing lipophilicity of AI, while species was much less important for the most lipophilic compound. Surfactant became less important with increasing AI lipophilicity, although it was always important. The preceding studies considered uptake at only one time interval (24 hours). Total uptake after 24 hours can be the same for a compound formulated with different surfactants, but rates of uptake (and therefore rain-fastness and subsequent translocation to target sites) can be quite different. Therefore, there was a requirement to be able to model uptake over time into whole plants. Hence, the objective of further studies was to determine whether a logistic-kinetic penetration model, developed using isolated plant cuticles, could be applied to whole plant uptake. Uptake over 24 hours was determined for three model compounds, applied in the presence and absence of surfactants, into the leaves of two plant species. Overall, the model fitted the whole plant uptake data well. Using the equations developed, based on initial dose, to calculate uptake at 24 hours, in conjunction with the logistic-kinetic model, has significantly progressed our understanding and ability to model uptake. The advantages of the models and equations described are that few variables are required, and they are simple to measure.}, subject = {Kutikula}, language = {en} } @article{SchneiderTautzGruenewaldetal.2012, author = {Schneider, Christof W. and Tautz, J{\"u}rgen and Gr{\"u}newald, Bernd and Fuchs, Stefan}, title = {RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131753}, pages = {e30023}, year = {2012}, abstract = {The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of >= 0.5 ng/bee (clothianidin) and >= 1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides.}, language = {en} }