@article{AgostonLiHaslingeretal.2012, author = {Agoston, Zsuzsa and Li, Naixin and Haslinger, Anja and Wizenmann, Andrea and Schulte, Dorothea}, title = {Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development}, series = {BMC Developmental Biology}, volume = {12}, journal = {BMC Developmental Biology}, number = {10}, doi = {10.1186/1471-213X-12-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132626}, year = {2012}, abstract = {Background: During early stages of brain development, secreted molecules, components of intracellular signaling pathways and transcriptional regulators act in positive and negative feed-back or feed-forward loops at the mid-hindbrain boundary. These genetic interactions are of central importance for the specification and subsequent development of the adjacent mid-and hindbrain. Much less, however, is known about the regulatory relationship and functional interaction of molecules that are expressed in the tectal anlage after tectal fate specification has taken place and tectal development has commenced. Results: Here, we provide experimental evidence for reciprocal regulation and subsequent cooperation of the paired-type transcription factors Pax3, Pax7 and the TALE-homeodomain protein Meis2 in the tectal anlage. Using in ovo electroporation of the mesencephalic vesicle of chick embryos we show that (i) Pax3 and Pax7 mutually regulate each other's expression in the mesencephalic vesicle, (ii) Meis2 acts downstream of Pax3/7 and requires balanced expression levels of both proteins, and (iii) Meis2 physically interacts with Pax3 and Pax7. These results extend our previous observation that Meis2 cooperates with Otx2 in tectal development to include Pax3 and Pax7 as Meis2 interacting proteins in the tectal anlage. Conclusion: The results described here suggest a model in which interdependent regulatory loops involving Pax3 and Pax7 in the dorsal mesencephalic vesicle modulate Meis2 expression. Physical interaction with Meis2 may then confer tectal specificity to a wide range of otherwise broadly expressed transcriptional regulators, including Otx2, Pax3 and Pax7.}, language = {en} } @phdthesis{Braasch2009, author = {Braasch, Ingo}, title = {Evolution by genome duplication: insights from vertebrate neural crest signaling and pigmentation pathways in teleost fishes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Gene and genome duplications are major mechanisms of eukaryotic genome evolution. Three rounds of genome duplication have occurred in the vertebrate lineage, two rounds (1R, 2R) during early vertebrate evolution and a third round, the fish-specific genome duplication (FSGD), in ray-finned fishes at the base of the teleost lineage. Whole genome duplications (WGDs) are considered to facilitate speciation processes and to provide the genetic raw material for major evolutionary transitions and increases in morphological complexity. In the present study, I have used comparative genomic approaches combining molecular phylogenetic reconstructions, synteny analyses as well as gene function studies (expression analyses and knockdown experiments) to investigate the evolutionary consequences and significance of the three vertebrate WGDs. First, the evolutionary history of the endothelin signaling system consisting of endothelin ligands and receptors was reconstructed. The endothelin system is a key component for the development of a major vertebrate innovation, the neural crest. This analysis shows that the endothelin system emerged in an ancestor of the vertebrate lineage and that its members in extant vertebrate genomes are derived from the vertebrate WGDs. Each round of WGD was followed by co-evolution of the expanding endothelin ligand and receptor repertoires. This supports the importance of genome duplications for the origin and diversification of the neural crest, but also underlines a major role for the co-option of new genes into the neural crest regulatory network. Next, I have studied the impact of the FSGD on the evolution of teleost pigment cell development and differentiation. The investigation of 128 genes showed that pigmentation genes have been preferentially retained in duplicate after the FSGD so that extant teleost genomes contain around 30\% more putative pigmentation genes than tetrapods. Large parts of pigment cell regulatory pathways are present in duplicate being potentially involved in teleost pigmentary innovations. There are also important differences in the retention of duplicated pigmentation genes among divergent teleost lineages. Functional studies of pigment synthesis enzymes in zebrafish and medaka, particularly of the tyrosinase family, revealed lineage-specific functional evolution of duplicated pigmentation genes in teleosts, but also pointed to anciently conserved gene functions in vertebrates. These results suggest that the FSGD has facilitated the evolution of the teleost pigmentary system, which is the most complex and diverse among vertebrates. In conclusion, the present study supports a major role of WGDs for phenotypic evolution and biodiversity in vertebrates, particularly in fish.}, subject = {Molekulare Evolution}, language = {en} }