@article{ArrowsmithEndresHeinzetal.2021, author = {Arrowsmith, Merle and Endres, Sara and Heinz, Myron and Nestler, Vincent and Holthausen, Max C. and Braunschweig, Holger}, title = {Probing the Boundaries between Lewis-Basic and Redox Behavior of a Parent Borylene}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {70}, doi = {10.1002/chem.202103256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257154}, pages = {17660-17668}, year = {2021}, abstract = {The parent borylene (CAAC)(Me\(_{3}\)P)BH, 1 (CAAC=cyclic alkyl(amino)carbene), acts both as a Lewis base and one-electron reducing agent towards group 13 trichlorides (ECl\(_{3}\), E=B, Al, Ga, In), yielding the adducts 1-ECl\(_{3}\) and increasing proportions of the radical cation [1]\(^{•+}\) for the heavier group 13 analogues. With boron trihalides (BX\(_{3}\), X=F, Cl, Br, I) 1 undergoes sequential adduct formation and halide abstraction reactions to yield borylboronium cations and shows an increasing tendency towards redox processes for the heavier halides. Calculations confirm that 1 acts as a strong Lewis base towards EX3 and show a marked increase in the B-E bond dissociation energies down both group 13 and the halide group.}, language = {en} } @article{BanKaračićTomićetal.2021, author = {Ban, Željka and Karačić, Zrinka and Tomić, Sanja and Amini, Hashem and Marder, Todd B. and Piantanida, Ivo}, title = {Triarylborane dyes as a novel non-covalent and non-inhibitive fluorimetric markers for DPP III enzyme}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {16}, issn = {1420-3049}, doi = {10.3390/molecules26164816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245046}, year = {2021}, abstract = {Novel dyes were prepared by simple "click CuAAC" attachment of a triarylborane-alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane-pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane-pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane-pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.}, language = {en} } @article{BergerFergerMarder2021, author = {Berger, Sarina M. and Ferger, Matthias and Marder, Todd B.}, title = {Synthetic Approaches to Triarylboranes from 1885 to 2020}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {24}, doi = {10.1002/chem.202005302}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238952}, pages = {7043 -- 7058}, year = {2021}, abstract = {In recent years, research in the fields of optoelectronics, anion sensors and bioimaging agents have been greatly influenced by novel compounds containing triarylborane motifs. Such compounds possess an empty p-orbital at boron which results in useful optical and electronic properties. Such a diversity of applications was not expected when the first triarylborane was reported in 1885. Synthetic approaches to triarylboranes underwent various changes over the following century, some of which are still used in the present day, such as the generally applicable routes developed by Krause et al. in 1922, or by Grisdale et al. in 1972 at Eastman Kodak. Some other developments were not pursued further after their initial reports, such as the synthesis of two triarylboranes bearing three different aromatic groups by Mikhailov et al. in 1958. This review summarizes the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present.}, language = {en} } @article{BergerRueheSchwarzmannetal.2021, author = {Berger, Sarina M. and R{\"u}he, Jessica and Schwarzmann, Johannes and Phillipps, Alexandra and Richard, Ann-Katrin and Ferger, Matthias and Krummenacher, Ivo and Tumir, Lidija-Marija and Ban, Željka and Crnolatac, Ivo and Majhen, Dragomira and Barišić, Ivan and Piantanida, Ivo and Schleier, Domenik and Griesbeck, Stefanie and Friedrich, Alexandra and Braunschweig, Holger and Marder, Todd B.}, title = {Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {56}, doi = {10.1002/chem.202102308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256963}, pages = {14057-14072}, year = {2021}, abstract = {The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\). Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\) with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.}, language = {en} } @article{BruecknerFantuzziStennettetal.2021, author = {Br{\"u}ckner, Tobias and Fantuzzi, Felipe and Stennett, Tom E. and Krummenacher, Ivo and Dewhurst, Rian D. and Engels, Bernd and Braunschweig, Holger}, title = {Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202102218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256451}, pages = {13661-13665}, year = {2021}, abstract = {The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P-P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B-B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy.}, language = {en} } @article{BruecknerHessStennettetal.2021, author = {Br{\"u}ckner, Tobias and Heß, Merlin and Stennett, Tom E. and Rempel, Anna and Braunschweig, Holger}, title = {Synthesis of Boron Analogues of Enamines via Hydroamination of a Boron-Boron Triple Bond}, series = {Angewandte Chemie, International Edition}, volume = {60}, journal = {Angewandte Chemie, International Edition}, number = {2}, doi = {10.1002/anie.202012101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240669}, pages = {736-741}, year = {2021}, abstract = {An N-heterocyclic-carbene-stabilized diboryne undergoes rapid, high-yielding and catalyst-free hydroamina- tion reactions with primary amines, yielding 1-amino-2-hydro- diborenes, which can be considered boron analogues of enamines. The electronics of the organic substituent at nitrogen influence the structure and further reactivity of the diborene product. With electron-rich anilines, a second hydroamination can occur at the diborene to generate 1,1-diamino-2,2-dihy- drodiboranes. With isopropylamine, the electronic influence of the alkyl substituent upon the diborene leads to an unprece- dented boron-mediated intramolecular N-dearylation reaction of an N-heterocyclic carbene unit.}, language = {en} } @article{BudimanLorenzenLiuetal.2021, author = {Budiman, Yudha P. and Lorenzen, Sabine and Liu, Zhiqiang and Radius, Udo and Marder, Todd B.}, title = {Base-Free Pd-Catalyzed C-Cl Borylation of Fluorinated Aryl Chlorides}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {11}, doi = {10.1002/chem.202004648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225687}, pages = {3869 -- 3874}, year = {2021}, abstract = {Catalytic C-X borylation of aryl halides containing two ortho-fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho-fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents. This method, conducted under base-free conditions, is compatible with the resulting di-ortho-fluorinated aryl boronate products which are sensitive to base.}, language = {en} } @article{BudimanWestcottRadiusetal.2021, author = {Budiman, Yudha P. and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis}, series = {Advanced Synthesis \& Catalysis}, volume = {363}, journal = {Advanced Synthesis \& Catalysis}, number = {9}, doi = {10.1002/adsc.202001291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225908}, pages = {2224 -- 2255}, year = {2021}, abstract = {Organoboron compounds are well known building blocks for many organic reactions. However, under basic conditions, polyfluorinated aryl boronic acid derivatives suffer from instability issues that are accelerated in compounds containing an ortho-fluorine group, which result in the formation of the corresponding protodeboronation products. Therefore, a considerable amount of research has focused on novel methodologies to synthesize these valuable compounds while avoiding the protodeboronation issue. This review summarizes the latest developments in the synthesis of fluorinated aryl boronic acid derivatives and their applications in cross-coupling reactions and other transformations. image}, language = {en} } @article{ChenMengLiaoetal.2021, author = {Chen, Xing and Meng, Guoyun and Liao, Guanming and Rauch, Florian and He, Jiang and Friedrich, Alexandra and Marder, Todd B. and Wang, Nan and Chen, Pangkuan and Wang, Suning and Yin, Xiaodong}, title = {Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {20}, doi = {10.1002/chem.202005185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256738}, pages = {6274-6282}, year = {2021}, abstract = {A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 \% for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.}, language = {en} } @phdthesis{Crumbach2021, author = {Crumbach, Merian}, title = {Modifying the Optoelectronic Properties of Polycyclic Aromatic Hydrocarbons and Linear Oligomers by Doping with Boron and Further Heteroatoms}, doi = {10.25972/OPUS-24284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Der Austausch ausgew{\"a}hlter CC-Einheiten durch ihre isoelektronischen und isosteren BN-Einheiten in π-konjugierten organischen Verbindungen (BN/CC-Isosterie), insbesondere in polyzyklischen aromatischen Kohlenwasserstoffen (PAKs), hat sich als erfolgreiche Strategie zur Herstellung neuartiger organisch-anorganischer Hybridmaterialien erwiesen, die strukturelle {\"A}hnlichkeiten mit ihren reinen Kohlenstoff Analoga aufweisen, aber in vielen F{\"a}llen mit ver{\"a}nderten faszinierenden Eigenschaften und Funktionen. In den ersten beiden Kapiteln werden die Synthese und Eigenschaften von neuartigen BNB-dotierten Phenalenylen, Dithienoazadiborepinen und Dithienooxadiborepinen vorgestellt. Die optoelektronischen Eigenschaften dieser neuen Bauelemente k{\"o}nnen durch Variation der eingebauten Ar- (Mes, Tip, FMes) und R-Gruppen (H, Me, i-Pr, t-Bu, Ph) effektiv eingestellt werden. Theoretische Untersuchungen, einschließlich NICS (Nucleus Independent Chemical Shift) Scans und AICD (Anisotropy of the Induced Current Density)-Berechnungen, wurden durchgef{\"u}hrt und geben Einblick in ihren aromatischen oder antiaromatischen Charakter. Der Einbau von BP-Einheiten, welche mit BN und CC valenz-isoelektronisch sind, in unges{\"a}ttigte organische Verbindungen ist dagegen bisher kaum untersucht worden, obwohl das Potenzial der resultierenden BCP-Hybridmaterialien f{\"u}r elektronische Anwendungen erst k{\"u}rzlich erkannt wurde. Konjugierte Hauptkettenpolymere mit BP-Fragmenten im R{\"u}ckgrat sind bisher unbekannt. Die ersten molekularen Modellverbindungen f{\"u}r ein BP-Analogon des konjugierten Polymers Poly(p-phenylen-vinylen) (PPV) werden in Kapitel 3 vorgestellt. Theoretische Untersuchungen ergaben, dass die Mes*-Gruppe das Phosphor-zentrum vollst{\"a}ndig planarisiert, wodurch der B=P-Doppelbindungscharakter verst{\"a}rkt und eine Konjugation {\"u}ber die BP-Einheit erm{\"o}glicht wird. Es wurden verschiedene synthetische Ans{\"a}tze zu diesen molekularen Modellverbindungen untersucht und eine erfolgreiche synthetische Strategie gefunden.}, subject = {Aromatizit{\"a}t}, language = {en} } @article{CrumbachBachmannFritzeetal.2021, author = {Crumbach, Merian and Bachmann, Jonas and Fritze, Lars and Helbig, Andreas and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {17}, doi = {10.1002/anie.202100295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238996}, pages = {9290 -- 9295}, year = {2021}, abstract = {Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.}, language = {en} } @article{CuiDietzHaerterichetal.2021, author = {Cui, Jingjing and Dietz, Maximilian and H{\"a}rterich, Marcel and Fantuzzi, Felipe and Lu, Wei and Dewhurst, Rian D. and Braunschweig, Holger}, title = {Diphosphino-Functionalized 1,8-Naphthyridines: a Multifaceted Ligand Platform for Boranes and Diboranes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {63}, doi = {10.1002/chem.202102721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256994}, pages = {15751-15756}, year = {2021}, abstract = {A 1,8-naphthyridine diphosphine (NDP) reacts with boron-containing Lewis acids to generate complexes featuring a number of different naphthyridine bonding modes. When exposed to diborane B\(_{2}\)Br\(_{4}\), NDP underwent self-deprotonation to afford [NDP-B\(_{2}\)Br\(_{3}\)]Br, an unsymmetrical diborane comprised of four fused rings. The reaction of two equivalents of monoborane BBr\(_{3}\) and NDP in a non-polar solvent provided the simple phosphine-borane adduct [NDP(BBr\(_{3}\))\(_{2}\)], which then underwent intramolecular halide abstraction to furnish the salt [NDP-BBr\(_{2}\)][BBr\(_{4}\)], featuring a different coordination mode from that of [NDP-B\(_{2}\)Br\(_{3}\)]Br. Direct deprotonation of NDP by KHMDS or PhCH2K generates mono- and dipotassium reagents, respectively. The monopotassium reagent reacts with one or half an equivalent of B\(_{2}\)(NMe\(_{2}\))\(_{2}\)Cl\(_{2}\) to afford NDP-based diboranes with three or four amino substituents.}, language = {en} } @article{CzernetzkiArrowsmithFantuzzietal.2021, author = {Czernetzki, Corinna and Arrowsmith, Merle and Fantuzzi, Felipe and G{\"a}rtner, Annalena and Tr{\"o}ster, Tobias and Krummenacher, Ivo and Schorr, Fabian and Braunschweig, Holger}, title = {A neutral beryllium(I) radical}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/anie.202108405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256529}, pages = {20776-20780}, year = {2021}, abstract = {The reduction of a cyclic alkyl(amino)carbene (CAAC)-stabilized organoberyllium chloride yields the first neutral beryllium radical, which was characterized by EPR, IR, UV/Vis spectroscopy and X-ray crystallography. DFT calculations show significant spin density at beryllium and confirm donor-acceptor bonding between an alkylberyllium radical fragment and a neutral CAAC ligand.}, language = {en} } @article{FergerBanKrošletal.2021, author = {Ferger, Matthias and Ban, Željka and Krošl, Ivona and Tomić, Sanja and Dietrich, Lena and Lorenzen, Sabine and Rauch, Florian and Sieh, Daniel and Friedrich, Alexandra and Griesbeck, Stefanie and Kenđel, Adriana and Miljanić, Snežana and Piantanida, Ivo and Marder, Todd B.}, title = {Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs}, series = {Chemistry-A European Journal}, volume = {27}, journal = {Chemistry-A European Journal}, number = {16}, doi = {10.1002/chem.202005141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256717}, pages = {5142-5159}, year = {2021}, abstract = {We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.}, language = {en} } @article{FergerBergerRauchetal.2021, author = {Ferger, Matthias and Berger, Sarina M. and Rauch, Florian and Sch{\"o}nitz, Markus and R{\"u}he, Jessica and Krebs, Johannes and Friedrich, Alexandra and Marder, Todd B.}, title = {Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {35}, doi = {10.1002/chem.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256827}, pages = {9094-9101}, year = {2021}, abstract = {A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr\(_{2}\)Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.}, language = {en} } @article{FranzsicoFantuzziCardozoetal.2021, author = {Franzsico, Marcos A. S. and Fantuzzi, Felipe and Cardozo, Thiago M. and Esteves, Pierre M. and Engels, Bernd and Oliveira, Ricardo R.}, title = {Taming the Antiferromagnetic Beast: Computational Design of Ultrashort Mn-Mn Bonds Stabilized by N-Heterocyclic Carbenes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {47}, doi = {10.1002/chem.202101116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256874}, pages = {12126-12136}, year = {2021}, abstract = {The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η\(^{6}\) coordination to the generation of Mn\(_{2}\) systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.}, language = {en} } @phdthesis{Fritze2021, author = {Fritze, Lars}, title = {Ways to Novel Inorganic-Organic Hybrid Materials Applying New B-C Bond Formation Strategies}, doi = {10.25972/OPUS-24217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {π-Conjugated oligomers and polymers with tricoordinate boron centers incorporated into the main chain have attracted considerable attention as the interaction of the vacant p orbital on boron with an adjacent π system of the chain leads to conjugated materials with intriguing optical and electronic properties. This enables applicability in organic electronics and optoelectronics (OLEDs, OFETs, photovoltaics) or as sensory materials. The potential of our B-C coupling protocol using metal-free catalytic Si/B exchange condensation is demonstrated by the synthesis of a series of π-conjugated monodisperse (het)aryl oligoboranes. Variation of the (het)aryl moieties allowed for tunability of the optoelectronic properties of the materials. Additionally, catalytic C-C cross-coupling strategies were applied to synthesize oligofuryl-based mono- and bisboranes, as well as polymers. These studies led to very robust and highly emissive compounds (f up to 97 \%), which allow for tuning of their emission color from blue to orange. Furthermore, this work includes investigations of reaction routes to a kinetically stabilized tetraoxaporphyrinogen. Being a key aspect of this work, a full investigation of the mechanism of the catalytic Si/B exchange was carried out. Additionally, this work presents the use of borenium cations to perform B-C coupling via intermolecular electrophilic borylation. Similar to the Si/B exchange, this route is capable of giving access to diaryl(bromo)boranes.}, subject = {Konjugierte Polymere}, language = {en} } @article{FullPanchalGoetzetal.2021, author = {Full, Julian and Panchal, Santosh P. and G{\"o}tz, Julian and Krause, Ana-Maria and Nowak-Kr{\´o}l, Agnieszka}, title = {Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {8}, doi = {10.1002/anie.202014138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225775}, pages = {4350 -- 4357}, year = {2021}, abstract = {Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φ\(_{fl}\)) of 18-24 \% in solution, green or yellow solid-state emission (Φ\(_{fl}\) up to 23 \%), and strong chiroptical response with large dissymmetry factors of up to 1.12×10\(^{-2}\). Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φ\(_{fl}\) of up to 47 \% in CH\(_{2}\)Cl\(_{2}\) and 25 \% in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.}, language = {en} } @article{FoehrenbacherKrahfussZapfetal.2021, author = {F{\"o}hrenbacher, Steffen A. and Krahfuss, Mirjam J. and Zapf, Ludwig and Friedrich, Alexandra and Ignat'ev, Nikolai V. and Finze, Maik and Radius, Udo}, title = {Tris(pentafluoroethyl)difluorophosphorane: a versatile fluoride acceptor for transition metal chemistry}, series = {Chemistry Europe}, volume = {27}, journal = {Chemistry Europe}, number = {10}, doi = {10.1002/chem.202004885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256665}, pages = {3504-3516}, year = {2021}, abstract = {Fluoride abstraction from different types of transition metal fluoride complexes [L\(_n\)MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C\(_2\)F\(_5\))\(_3\)PF\(_2\) to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C\(_2\)F\(_5\))\(_3\)PF\(_3\)]\(^-\)) is reported. (C\(_2\)F\(_5\))\(_3\)PF\(_2\) reacted with trans-[Ni(iPr\(_2\)Im)\(_2\)(Ar\(^F\))F] (iPr2Im=1,3-diisopropylimidazolin-2-ylidene; Ar\(^F\)=C\(_6\)F\(_5\), 1 a; 4-CF\(_3\)-C\(_6\)F\(_4\), 1 b; 4-C\(_6\)F\(_5\)-C\(_6\)F\(_4\), 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr\(_2\)Im)\(_2\)(solv)(Ar\(^F\))]FAP (2 a-c[solv]; solv=Et\(_2\)O, CH\(_2\)Cl\(_2\), THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh\(_3\), solvent coordination was suppressed and the complexes trans-[Ni(iPr\(_2\)Im)\(_2\)(PPh\(_3\))(C\(_6\)F\(_5\))]FAP (trans-2 a[PPh\(_3\)]) and cis-[Ni(iPr\(_2\)Im)\(_2\)(Dipp\(_2\)Im)(C\(_6\)F\(_5\))]FAP (cis-2 a[Dipp\(_2\)Im]) (Dipp\(_2\)Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp\(_2\)Im)CuF] (3) in CH\(_2\)Cl\(_2\) or 1,2-difluorobenzene led to the isolation of [{(Dipp\(_2\)Im)Cu}\(_2\)]\(^2\)\(^+\)2 FAP\(^-\) (4). Subsequent reaction of 4 with PPh\(_3\) and different carbenes resulted in the complexes [(Dipp\(_2\)Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6Me6, fluoride transfer afforded [(Dipp\(_2\)Im)Cu(C\(_6\)Me\(_6\))]FAP (5 f), which serves as a source of [(Dipp\(_2\)Im)Cu)]\(^+\). Fluoride abstraction of [Cp\(_2\)TiF\(_2\)] (7) resulted in the formation of dinuclear [FCp\(_2\)Ti(μ-F)TiCp\(_2\)F]FAP (8) (Cp=η\(^5\)-C\(_5\)H\(_5\)) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.}, language = {en} } @article{FoehrenbacherZehKrahfussetal.2021, author = {F{\"o}hrenbacher, Steffen A. and Zeh, Vivien and Krahfuss, Mirjam J. and Ignat'ev, Nikolai V. and Finze, Maik and Radius, Udo}, title = {Tris(pentafluoroethyl)difluorophosphorane and N-Heterocyclic Carbenes: Adduct Formation and Frustrated Lewis Pair Reactivity}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {20}, doi = {10.1002/ejic.202100183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257386}, pages = {1941-1960}, year = {2021}, abstract = {The synthesis and characterization of Lewis acid/base adducts between tris(pentafluoroethyl)difluorophosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and selected N-heterocyclic carbenes (NHCs) R\(_{2}\)Im (1,3-di-organyl-imidazolin-2-ylidene) and phosphines are reported. For NHCs with small alkyl substituents at nitrogen (R=Me, nPr, iPr) the adducts NHC ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (2 a-h) were isolated. The reaction with the sterically more demanding NHCs Dipp\(_{2}\)Im (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolin-2-ylidene) (1 i) and tBu\(_{2}\)Im (1,3-di-tert-butyl-imidazolin-2-ylidene) (1 j) afforded the aNHC adducts 3 i and 3 j (a denotes "abnormal" NHC coordination via a backbone carbon atom). The use of tBuMeIm (1-tert-butyl-3-methyl-imidazolin-2-ylidene) (1 m) led to partial decomposition of the NHC and formation of the salt [tBuMeIm-H][MeIm ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)] (4 m). The phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) forms adducts with PMe\(_{3}\) but does not react with PPh\(_{3}\) or PCy\(_{3}\). The mer-cis isomer of literature-known Me\(_{3}\)P ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (5 a) was structurally characterized. Mixtures of the phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and the sterically encumbered NHCs tBu\(_{2}\)Im, Dipp\(_{2}\)Im, and Dipp\(_{2}\)Im\(^{H2}\) (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolidin-2-ylidene) (1 k) showed properties of FLPs (Frustrated Lewis Pairs) as these mixtures were able to open the ring of THF (tetrahydrofuran) to yield NHC-(CH\(_{2}\))\(_{4}\)O-PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) 6 i-k. Furthermore, the deprotonation of the weak C-H acids CH\(_{3}\)CN, acetone, and ethyl acetate was achieved, which led to the formation of the corresponding imidazolium salts and the phosphates [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CN)]\(^{-}\) (7), [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(OC(=CH\(_{2}\))CH\(_{3}\))]\(^{-}\) (8) and [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CO\(_{2}\)Et)]\(^{-}\) (9).}, language = {en} } @article{GerlachMonningerSchleieretal.2021, author = {Gerlach, Marius and Monninger, Sophie and Schleier, Domenik and Hemberger, Patrick and Goettel, James T. and Braunschweig, Holger and Fischer, Ingo}, title = {Photoelectron Photoion Coincidence Spectroscopy of NCl\(_{3}\) and NCl\(_{2}\)}, series = {ChemPhysChem}, volume = {22}, journal = {ChemPhysChem}, number = {21}, doi = {10.1002/cphc.202100537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257322}, pages = {2164-2167}, year = {2021}, abstract = {We investigate NCl\(_{3}\) and the NCl\(_{2}\) radical by photoelectron-photoion coincidence spectroscopy using synchrotron radiation. The mass selected threshold photoelectron spectrum (ms-TPES) of NCl\(_{3}\) is broad and unstructured due to the large geometry change. An ionization energy of 9.7±0.1 eV is estimated from the spectrum and supported by computations. NCl2 is generated by photolysis at 213 nm from NCl\(_{3}\) and its ms-TPES shows an extended vibrational progression with a 90 meV spacing that is assigned to the symmetric N-Cl stretching mode in the cation. An adiabatic ionization energy of 9.94 ± 0.02 eV is determined.}, language = {en} } @article{GaertnerMarekArrowsmithetal.2021, author = {G{\"a}rtner, Annalena and Marek, Matth{\"a}us and Arrowsmith, Merle and Auerhammer, Dominic and Radacki, Krzysztof and Prieschl, Dominic and Dewhurst, Rian D. and Braunschweig, Holger}, title = {Boron- versus Nitrogen-Centered Nucleophilic Reactivity of (Cyano)hydroboryl Anions: Synthesis of Cyano(hydro)organoboranes and 2-Aza-1,4-diborabutatrienes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202101025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256853}, pages = {9694-9699}, year = {2021}, abstract = {Cyclic alkyl(amino)carbene-stabilized (cyano)hydroboryl anions were synthesized by deprotonation of (cyano)dihydroborane precursors. While they display boron-centered nucleophilic reactivity towards organohalides, generating fully unsymmetrically substituted cyano(hydro)organoboranes, they show cyano-nitrogen-centered nucleophilic reactivity towards haloboranes, resulting in the formation of hitherto unknown linear 2-aza-1,4-diborabutatrienes.}, language = {en} } @article{HagspielArrowsmithFantuzzietal.2021, author = {Hagspiel, Stephan and Arrowsmith, Merle and Fantuzzi, Felipe and Vargas, Alfredo and Rempel, Anna and Hermann, Alexander and Br{\"u}ckner, Tobias and Braunschweig, Holger}, title = {Highly colored boron-doped thiazolothiazoles from the reductive dimerization of boron isothiocyanates}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {12}, doi = {10.1002/anie.202015508}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256432}, pages = {6446-6450}, year = {2021}, abstract = {Reduction of (CAAC)BBr\(_2\)(NCS) (CAAC=cyclic alkyl(amino)carbene) in the presence of a Lewis base L yields tricoordinate (CAAC)LB(NCS) borylenes which undergo reversible E/Z-isomerization. The same reduction in the absence of L yields deep blue, bis(CAAC)-stabilized, boron-doped, aromatic thiazolothiazoles resulting from the dimerization of dicoordinate (CAAC)B(NCS) borylene intermediates.}, language = {en} } @article{HagspielFantuzziDewhurstetal.2021, author = {Hagspiel, Stephan and Fantuzzi, Felipe and Dewhurst, Rian D. and G{\"a}rtner, Annalena and Lindl, Felix and Lamprecht, Anna and Braunschweig, Holger}, title = {Adducts of the parent boraphosphaketene H\(_2\)BPCO and their decarbonylative insertion chemistry}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202103521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256470}, pages = {13666-13670}, year = {2021}, abstract = {The first examples of Lewis base adducts of the parent boraphosphaketene (H\(_2\)B-PCO) and their cyclodimers are prepared. One of these adducts is shown to undergo mild decarbonylation and phosphinidene insertion into a B-C bond of a borole, forming very rare examples of 1,2-phosphaborinines, B/P isosteres of benzene. The strong donor properties of these 1,2-phosphaborinines are confirmed by the synthesis of their π complexes with the Group 6 metals.}, language = {en} } @article{HanftRadackiLichtenberg2021, author = {Hanft, Anna and Radacki, Krzysztof and Lichtenberg, Crispin}, title = {Cationic Bismuth Aminotroponiminates: Charge Controls Redox Properties}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {20}, doi = {10.1002/chem.202005186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225669}, pages = {6230 -- 6239}, year = {2021}, abstract = {The behavior of the redox-active aminotroponiminate (ATI) ligand in the coordination sphere of bismuth has been investigated in neutral and cationic compounds, [Bi(ATI)\(_{3}\)] and [Bi(ATI)\(_{2}\)L\(_{n}\)][A] (L=neutral ligand; n=0, 1; A=counteranion). Their coordination chemistry in solution and in the solid state has been analyzed through (variable-temperature) NMR spectroscopy, line-shape analysis, and single-crystal X-ray diffraction analyses, and their Lewis acidity has been evaluated by using the Gutmann-Beckett method (and modifications thereof). Cyclic voltammetry, in combination with DFT calculations, indicates that switching between ligand- and metal-centered redox events is possible by altering the charge of the compounds from 0 in neutral species to +1 in cationic compounds. This adds important facets to the rich redox chemistry of ATIs and to the redox chemistry of bismuth compounds, which is, so far, largely unexplored.}, language = {en} } @article{HanftRottschaeferWieprechtetal.2021, author = {Hanft, Anna and Rottsch{\"a}fer, Dennis and Wieprecht, Nele and Geist, Felix and Radacki, Krzysztof and Lichtenberg, Crispin}, title = {Aminotroponiminates: Impact of the NO\(_{2}\) Functional Group on Coordination, Isomerisation, and Backbone Substitution}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {57}, doi = {10.1002/chem.202102324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256988}, pages = {14250-14262}, year = {2021}, abstract = {Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first "naked" (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.}, language = {en} } @article{HeRauchFriedrichetal.2021, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Krebs, Johannes and Krummenacher, Ivo and Bertermann, R{\"u}diger and Nitsch, J{\"o}rn and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Phenylpyridyl-fused boroles: a unique coordination mode and weak B-N coordination-induced dual fluorescence}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {9}, doi = {10.1002/anie.202013692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256423}, pages = {4833-4840}, year = {2021}, abstract = {Phenylpyridyl-fused boroles [TipPBB1]\(_4\) and TipPBB2 were synthesized and their properties investigated. [TipPBB1]\(_4\) forms a tetramer in both the solid state and solution. TipPBB2 contains a 4-coordinate boron atom in the solid state but dissociates to give a 3-coordinate boron species in solution. TipPBB2 shows interesting temperature-dependent dual fluorescence in solution because of the equilibrium between 3- and 4-coordinate boron species due to weak N⋅⋅⋅B intermolecular coordination.}, language = {en} } @article{HessKrummenacherDellermannetal.2021, author = {Heß, Merlin and Krummenacher, Ivo and Dellermann, Theresa and Braunschweig, Holger}, title = {Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202100795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256830}, pages = {9503-9507}, year = {2021}, abstract = {A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines.}, language = {en} } @phdthesis{Hock2021, author = {Hock, Andreas}, title = {NHC-stabilized Alanes and Gallanes}, doi = {10.25972/OPUS-21252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis describes the synthesis and reactivity of NHC-stabilized Lewis-acid/Lewis-base adducts of alanes and gallanes (NHC = Me2ImMe, iPr2Im, iPr2ImMe, Dipp2Im, Dipp2ImH). As this field of research has developed tremendously, especially in the last five years, the first chapter provides an overview of the current state of knowledge. The influence of electronegative π-donor-substituents on the stability of the NHC alane adducts is examined in chapter 2. For this purpose, the carbene stabilized alanes (NHC)∙AlH3 (NHC = iPr2Im, Dipp2Im) were reacted with secondary amines of different steric demand and with phenols. The π-donor substituents saturate the Lewis acidic aluminium center and coordination of a second NHC-ligand was not observed. The strongly electronegative N and O substituents increase the Lewis acidity of the aluminium atom, which leads to stronger Al-CNHC as well as Al-H bonds, which inhibits the insertion of the carbene into the Al-H bond. In Chapter 3 the development of the synthesis and reactivity of carbene-stabilized gallanes is presented. The synthesis of NHC gallane adducts (NHC)∙GaH3, (NHC)∙GaH2Cl and (NHC)∙GaHCl2 and their reactivity towards NHCs and cAACMe were investigated in detail. The reaction of the mono- and dichlorogallanes (NHC)∙GaH2Cl and (NHC)∙GaHCl2 (NHC = iPr2ImMe, Dipp2Im) with cAACMe led to insertion of the cAACMe with formation of chiral and achiral compounds depending on the sterically demand of the used NHC. Furthermore, the formation of bis-alkylgallanes was observed for the insertion of two equivalents of cAACMe with release of the NHC ligand. Chapter 4 describes investigations concerning the synthesis and reactivity of NHC-stabilized iodoalanes and iodogallanes, which are suitable for the formation of cationic aluminium and gallium dihydrides. The reaction of (NHC)∙EH2I (E = Al, Ga) stabilized by the sterically less demanding NHCs (NHC = Me2ImMe, iPr2Im, iPr2ImMe) with an additional equivalent of the NHC led to the formation of the cationic bis-NHC aluminium and gallium dihydrides [(NHC)2∙AlH2]+I- and [(NHC)2∙GaH2]+I-. Furthermore, the influence of the steric demand of the used NHC was investigated. The adduct (Dipp2Im)∙GaH2I was reacted with an additional equivalent of Dipp2Im. Due to the bulk of the NHC used, rearrangement of one of the NHC ligands from normal to abnormal coordination occurred and the cationic gallium dihydride [(Dipp2Im)∙GaH2(aDipp2Im)] was isolated. Chapter 5 of this thesis reports investigations concerning the reduction of cyclopentadienyl-substituted alanes and gallanes with singlet carbenes. NHC stabilized pentamethylcyclopentadienyl aluminium and gallium dihydrides (NHC)∙Cp*MH2 (E = Al, Ga) were prepared by the reaction of (AlH2Cp*)3 with the corresponding NHCs or by the salt elimination of (NHC)∙GaH2I with KCp*. The gallane adducts decompose at higher temperatures with reductive elimination of Cp*H and formation of Cp*GaI. . The reductive elimination is preferred for sterically demanding NHCs (Dipp2Im > iPr2ImMe > Me2ImMe). In addition, NHC ring expansion of the backbone saturated carbene Dipp2ImH was observed for the reaction of the NHC with (AlH2Cp*)3, which led to (RER-Dipp2ImHH2)AlCp*. Furthermore, the reactivity of the adducts (NHC)∙Cp*EH2 (E = Al, Ga) towards cAACMe was investigated. The reaction of the alane adducts stabilized by the sterically more demanding NHCs iPr2ImMe and Dipp2Im afforded the exceptionally stable insertion product (cAACMeH)Cp*AlH V-10 with liberation of the NHC. The reaction of the gallium hydrides (NHC)∙Cp*GaH2 with cAACMe led to the reductive elimination of cAACMeH2 and formation of Cp*GaI. A variety of neutral and cationic carbene-stabilized alanes and gallanes are presented in this work. The introduction of electronegative π-donor substituents (Cl-, I-, OR-, NR2-) and the investigations on the thermal stability of these compounds led to the conclusion that the stability of alanes and gallanes increased significantly by such a substitution. Investigations on the reactivity of the NHC adducts towards cAACMe resulted in various insertion products of the carbene into the Al-H or Ga-H bonds and the first cAACMe stabilized dichlorogallane was isolated. Furthermore, a first proof was provided that carbenes can be used specifically for the (formal) reduction of group 13 hydrides of the higher homologues. Thus, the synthesis of Cp*GaI from the reaction of (NHC)∙Cp*GaH2 with cAACMe was developed. In the future, this reaction pathway could be of interest for the preparation of other low-valent compounds of aluminium and gallium.}, subject = {Aluminiumhydridderivate}, language = {en} } @article{HuangWuKrebsetal.2021, author = {Huang, Mingming and Wu, Zhu and Krebs, Johannes and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Ni-Catalyzed Borylation of Aryl Sulfoxides}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256778}, pages = {8149-8158}, year = {2021}, abstract = {A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B\(_{2}\)(neop)\(_{2}\) (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)\(_{2}\)(4-CF\(_{3}\)-C\(_{6}\)H\(_{4}\)){(SO)-4-MeO-C\(_{6}\)H\(_{4}\)}] 4. For complex 5, the isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(SOC\(_{6}\)H\(_{5}\))] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(η\(^{2}\)-{SO}-C\(_{6}\)H\(_{5}\))], which lies only 10.8 kcal/mol above 5.}, language = {en} } @phdthesis{Kerner2021, author = {Kerner, Florian Tobias}, title = {Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products}, doi = {10.25972/OPUS-20910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 - 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @article{KoleMerzAmaretal.2021, author = {Kole, Goutam Kumar and Merz, Julia and Amar, Anissa and Fontaine, Bruno and Boucekkine, Abdou and Nitsch, J{\"o}rn and Lorenzen, Sabine and Friedrich, Alexandra and Krummenacher, Ivo and Košćak, Marta and Braunschweig, Holger and Piantanida, Ivo and Halet, Jean-Fran{\c{c}}ois and M{\"u}ller-Buschbaum, Klaus and Marder, Todd B.}, title = {2- and 2,7-substituted para-N-methylpyridinium pyrenes: syntheses, molecular and electronic structures, photophysical, electrochemical, and spectroelectrochemical properties and binding to double-stranded (ds) DNA}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {8}, doi = {10.1002/chem.202004748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256642}, pages = {2837-2853}, year = {2021}, abstract = {Two N-methylpyridinium compounds and analogous N-protonated salts of 2- and 2,7-substituted 4-pyridyl-pyrene compounds were synthesised and their crystal structures, photophysical properties both in solution and in the solid state, electrochemical and spectroelectrochemical properties were studied. Upon methylation or protonation, the emission maxima are significantly bathochromically shifted compared to the neutral compounds, although the absorption maxima remain almost unchanged. As a result, the cationic compounds show very large apparent Stokes shifts of up to 7200 cm\(^{-1}\). The N-methylpyridinium compounds have a single reduction at ca. -1.5 V vs. Fc/Fc\(^+\) in MeCN. While the reduction process was reversible for the 2,7-disubstituted compound, it was irreversible for the mono-substituted one. Experimental findings are complemented by DFT and TD-DFT calculations. Furthermore, the N-methylpyridinium compounds show strong interactions with calf thymus (ct)-DNA, presumably by intercalation, which paves the way for further applications of these multi-functional compounds as potential DNA-bioactive agents.}, language = {en} } @article{KrahfussRadius2021, author = {Krahfuss, Mirjam J. and Radius, Udo}, title = {N-Heterocyclic Silylene Main Group Element Chemistry: Adduct Formation, Insertion into E-X Bonds and Cyclization of Organoazides}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {6}, doi = {10.1002/ejic.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224507}, pages = {548 -- 561}, year = {2021}, abstract = {Investigations concerning the reactivity of the N-heterocyclic silylene Dipp\(_{2}\)NHSi (1, 1,3-bis(2,6-diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-ylidene) towards selected alanes and boranes, elemental halides X\(_{2}\) (X=Br, I), selected halide containing substrates such as tin chlorides and halocarbons, as well as organoazides are presented. The NHSi adducts Dipp\(_{2}\)NHSi⋅AlI\(_{3}\) (2), Dipp\(_{2}\)NHSi⋅Al(C\(_{6}\)F\(_{5}\))\(_{3}\) (3), and Dipp\(_{2}\)NHSi⋅B(C\(_{6}\)F\(_{5}\))\(_{3}\) (4) were formed by the reaction of Dipp\(_{2}\)NHSi with the corresponding Lewis acids AlI\(_{3}\), Al(C\(_{6}\)F\(_{6}\))\(_{3}\) and B(C\(_{6}\)F\(_{5}\))\(_{3}\). Adducts 3 and 4 were tested with respect to their ability to activate small organic molecules, but no frustrated Lewis pair reactivity was observed. Reactions of Dipp\(_{2}\)NHSi with Br\(_{2}\), I\(_{2}\), Ph\(_{2}\)SnCl\(_{2}\) and Me\(_{3}\)SnCl led to formation of Dipp\(_{2}\)NHSiBr\(_{2}\) (5), Dipp\(_{2}\)NHSiI\(_{2}\) (6), Dipp\(_{2}\)NHSiCl\(_{2}\) (7) and {(Me\(_{3}\)Sn)N(Dipp)CH}\(_{2}\) (8), respectively. The reaction with the halocarbons methyl iodide, benzyl chloride, and benzyl bromide afforded the insertion products Dipp\(_{2}\)NHSi(I)(CH\(_{3}\)) (9), Dipp\(_{2}\)NHSi(Cl)(CH\(_{2}\)Ph) (10) and Dipp\(_{2}\)NHSi(Br)(CH\(_{2}\)Ph) (11). Reaction of Dipp\(_{2}\)NHSi with the organoazides Ad-N\(_{3}\) (Ad=adamantyl) and TMS-N\(_{3}\) (TMS=trimethylsilyl) led to the formation of 1-Dipp\(_{2}\)NHSi-2,5-bis(adamantyl)-tetrazoline (12) and bis(trimethylsilyl)amido azido silane (13), respectively. For 2,6-(diphenyl)phenyl-N\(_{3}\) C-H activation occurs and a cyclosilamine 14 was isolated.}, language = {en} } @article{KrebsHaehnelKrummenacheretal.2021, author = {Krebs, Johannes and Haehnel, Martin and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256841}, pages = {8159-8167}, year = {2021}, abstract = {Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC\(_{6}\)H\(_{4}\))-closo-1,2-C\(_{2}\)B\(_{10}\)H\(_{10}\)-2-)\(_{2}\)(4-MeC\(_{6}\)H\(_{4}\))B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr\(_{2}\). Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1\(^{.-}\) was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1\(^{.-}\), their calculated geometries, and the S\(_{1}\) excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.}, language = {en} } @article{LindlGuoKrummenacheretal.2021, author = {Lindl, Felix and Guo, Xueying and Krummenacher, Ivo and Rauch, Florian and Rempel, Anna and Paprocki, Valerie and Dellermann, Theresa and Stennett, Tom E. and Lamprecht, Anna and Br{\"u}ckner, Tobias and Radacki, Krzysztof and B{\´e}langer-Chabot, Guillaume and Marder, Todd B. and Lin, Zhenyang and Braunschweig, Holger}, title = {Rethinking Borole Cycloaddition Reactivity}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {43}, doi = {10.1002/chem.202101290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256888}, pages = {11226-11233}, year = {2021}, abstract = {Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.}, language = {en} } @phdthesis{Liu2021, author = {Liu, Zhiqiang}, title = {Fluorinated Aryl Boronates as Units in Organic Synthesis}, doi = {10.25972/OPUS-24576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {It is generally acknowledged that polyfluoroarenes are important fluorinated structural units for various organic molecules, such as pharmaceuticals, agrochemicals, and organic materials. Polyfluorinated aryl alkynes and alcohols are also powerful building blocks in chemical synthesis because of their versatility to be transformed into various useful molecules and also their ubiquity in natural product synthesis. Efficient methods for the synthesis of polyfluorinated aryl alkynes and alcohols are presented in Chapter 2 and Chapter 3. In addition, 3-amino-indoles have found a broad applications in medicinal chemistry as effective anticancer agents, compounds with analgesic properties and can function as potent inhibitors of tubulin polymerization, and agents for the prevention of type II diabetes. A simple method for the synthesis of 3-amino-indoles via the annulation reaction of polyfluorophenylboronates with DMF is reported in Chapter 4. Chapter 2 In Chapter 2, a mild process for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes (Scheme S-1) is reported. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. This copper-catalyzed reaction was conducted on a gram scale to generate the corresponding product in good yield (72\%). Scheme S-1. Copper-catalyzed oxidative cross-coupling of terminal alkynes with polyfluorophenylboronate esters. Based on previous reports and the aforementioned observations, a plausible catalytic cycle for this oxidative cross-coupling reaction is shown in Scheme S-2. The first step involves the addition of an alkynyl anion to Cu leading to the formation of alkynylcopper(II) species B. Subsequent transmetalation between ArFBpin and intermediate B occurs to form intermediate C. The desired product 3a is generated by eductive elimination. Finally, the oxidation of Cu(0) to Cu(II) with DDQ and Ag2O regenerates A to complete the catalytic cycle. Scheme S-2. Proposed mechanism of copper(II)-catalyzed oxidative cross-coupling between terminal alkynes and polyfluorophenylboronate esters. Chapter 3 In Chapter 3, A convenient and efficient protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones (Scheme S-3). The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Scheme S-3. Base-promoted 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Control experiments were carried out to gain insight into the reaction mechanism. The reaction of 2a with pentafluorobenzene 5 under standard conditions was examined, yet 3a was not formed in any detectable amounts (Scheme S-4a), indicating that the C-Bpin moiety is essential and deprotonation of the fluoroarene or nucleophilic attack at the fluoroarene by the base is not a plausible pathway. Interestingly, for the standard reaction between 1a and 2a, the yield dropped dramatically if 18-crown-6 ether and K2CO3 were added (Scheme S-4b). This experimental result indicates that the presence of the potassium ion plays a crucial role for the outcome of the reaction. Furthermore, if the reaction of 1a and 2a was performed in the presence of only a catalytic amount of K2CO3 (20 mol\%) (Scheme S-4c), reaction rates were reduced, and a week was required to produce 3a in good yield. This finding again indicates that the potassium ion (or the base) plays an important role in the reaction. Substituting ortho-fluorines by ortho-chlorines, using either C6Cl5Bpin 2,6-dichlorophenyl-1-Bpin as substrates, did not yield any product as shown by in situ GCMS studies. Scheme S-4. Control experiments. Based on DFT calculations, a mechanism for the 1,2-addition of polyfluorophenylboronates to aryl aldehydes in the presence of K2CO3 as base is proposed, as shown in Scheme S-5. K2CO3 interacts with the Lewis-acidic Bpin moiety of substrate 1 to generate base adduct A, which weakens the carbon-boron bond and ultimately cleaves the BC bond along with attachment of a potassium cation to the aryl group. The resulting ArF- anion adduct B undergoes nucleophilic attack at the aldehyde carbon atom of substrate 2 to generate methanolate C. The methanolate oxygen atom then attacks the electrophilic Bpin group to obtain compound D. Transfer of K2CO3 from intermediate D to the boron atom of the more Lewis-acidic polyfluorophenyl-Bpin 1 finally closes the cycle and regenerates complex A. Thus, the primary reaction product is the O-borylated addition product E, which was detected by HRMS and NMR spectroscopy for the perfluorinated derivative. Scheme S-5. Proposed mechanism of the 1,2-addition of polyfluorophenylboronates to aldehydes and ketones. Chapter 4 Chapter 4 presents a novel protocol for the transition metal-free addition and annulation of polyfluoroarylboronate esters to DMF, which provides 3-aminoindoles and tertiary amines in moderate to excellent yields (Scheme S-6). Scheme S-6. Annulation and addition reactions of polyfluorophenylboronates with DMF. While exploring the application of this strategy in synthesis, perfluorophenylBpin reacted smoothly with ethynylarenes and DMF to afford propargylamines with moderate to excellent yields (Scheme S-7). Scheme S-7. Three-component cross-coupling reaction for the synthesis of propargylamines.}, subject = {Fluorinated Aryl Boronates}, language = {en} } @article{LiuKoleBudimanetal.2021, author = {Liu, Zhiqiang and Kole, Goutam Kumar and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Transition metal catalyst-free, base-promoted 1,2-additions of polyfluorophenylboronates to aldehydes and ketones}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {30}, doi = {10.1002/anie.202103686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256487}, pages = {16529-16538}, year = {2021}, abstract = {A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K\(^+\) in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.}, language = {en} } @phdthesis{Lorenz2021, author = {Lorenz, Thomas}, title = {Conjugated Polymers with BN Units in the Main Chain}, doi = {10.25972/OPUS-21923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219230}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In recent years PI-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons have attracted a lot of interest due to their great potential in organic electronics. However, there are only few known examples of conjugated polymers with BN units in their main chain. Within this work silazane cleavage with silicon-boron (Si/B) exchange for the synthesis of a novel class of inorganic-organic hybrid polymers is demonstrated. These polymers consist of alternating NBN and para-phenylene units in the main chain. Photophysical studies and TD-DFT calculations for the polymer and molecular model systems were carried out, revealing a low extent of PI-conjugation across the NBN units. The new polymers can be used as macromolecular polyligands by a cross-linking reaction with a ZrIV compound. In the next chapter the synthesis and characterization of the first poly(p-phenylene iminoborane) is presented. This novel inorganic-organic hybrid polymer can be described as a BN analogue of the well-known poly(p-phenylene vinylene) (PPV) and is also accessible using the previously described Si/B exchange as synthetic strategy. Photophysical investigations and TD-DFT calculations on the polymer and corresponding model oligomers provide clear evidence for PI-conjugation across the B=N units and extension of the conjugation path with increasing chain length. Furthermore, a possible application of Si/B exchange for the synthesis of polysulfoximines was explored. Herein, diaryl sulfoximines and a p-phenylene bisborane serve as building blocks for new BN- and BO-doped alternating inorganic-organic hybrid copolymers. While the BN-linked polymers were accessible by a facile silicon/boron exchange protocol, the synthesis of polymers with B-O linkages in the main chain is achieved by salt elimination. In the last chapter the concept of Si/B exchange was investigated for the synthesis of BP-linked oligomers. Herein oligomers with sterically less demanding substituents (substituents: 2,4,6-trimethylphenyl or 2,4,6-tri-iso-propylphenyl) at the phosphorus are accessible using Si/B exchange, but the oligomer with Mes* (2,4,6-tri-tert-butylphenyl) as substituent needed a salt elimination pathway to give the desired product. Experimental data and theoretical investigations indicate, that the P-substituent has a high influence on the geometry of the phosphorus center and therefore on the possible conjugation over the BP units.}, subject = {Polyphenylenvinylenanaloga}, language = {en} } @article{LuisHorrerPhilippetal.2021, author = {Luis, Werner and Horrer, G{\"u}nther and Philipp, Michael and Lubitz, Katharina and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {A General Synthetic Route to NHC-Phosphinidenes: NHC-mediated Dehydrogenation of Primary Phosphines}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {8}, doi = {10.1002/zaac.202000405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258016}, pages = {881-895}, year = {2021}, abstract = {The dehydrocoupling of primary phosphines with N-heterocyclic carbenes (NHCs) to yield NHC-phosphinidenes is reported. The reaction of two equivalents of the NHCs Me\(_2\)Im (1,3-dimethylimidazolin-2-ylidene), Me\(_4\)Im (1,3,4,5-tetramethylimidazolin-2-ylidene), iPr\(_2\)Im (1,3-di-iso-propylimidazolin-2-ylidene) and Mes\(_2\)Im (2,4,6-trimethylphenylimidazolin-2-ylidene) with PhPH\(_2\) and MesPH\(_2\) led to the NHC stabilized phosphinidenes (NHC)PAr: (iPr\(_2\)Im)PPh (1), (Mes\(_2\)Im)PPh (2), (Me\(_4\)Im)PPh (3), (Mes\(_2\)Im)PMes (4), (Me\(_2\)Im)PMes (5), (Me\(_4\)Im)PMes (6) and (iPr\(_2\)Im)PMes (7). The reaction of tBuPH\(_2\) with two equivalents of the NHCs afforded the corresponding NHC stabilized parent phosphinidenes (NHC)PH: (iPr\(_2\)Im)PH (8), (Mes\(_2\)Im)PH (9) and (Me\(_4\)Im)PH (10). Reaction of 1 with oxygen and sulfur led to isolation of iPr\(_2\)Im-P(O)\(_2\)Ph (11) and iPr\(_2\)Im-P(S)\(_2\)Ph (12), whereas the reaction with elemental selenium and tellurium gave (NHC)PPh cleavage with formation of (iPr\(_2\)Im)Se (13), iPr\(_2\)ImTe (14) and different cyclo-oligophosphines. Furthermore, the complexes [{(iPr\(_2\)Im)PPh}W(CO)\(_5\)] (15), [Co(CO)\(_2\)(NO){(iPr\(_2\)Im)PPh}] (16) and [(η\(^5\)-C\(_5\)Me\(_2\))Co(η\(^2\)-C\(_2\)H\(_4\)){(iPr\(_2\)Im)PPh}] (17) have been prepared starting from 1 and a suitable transition metal complex precursor. The complexes 16 and 17 decompose in solution upon heating to ca. 80 °C to yield the NHC complexes [Co(iPr\(_2\)Im)(CO)\(_2\)(NO)] and [(η\(^5\)-C\(_5\)Me\(_5\))Co(iPr\(_2\)Im)(η\(^2\)-C\(_2\)H\(_4\))] with formation of cyclo-oligophosphines. The reaction of 1 with [Ni(COD)\(_2\)] afforded the diphosphene complex [Ni(iPr\(_2\)Im)\(_2\)(trans-PhP=PPh)] 18.}, language = {en} } @article{MaierMarder2021, author = {Maier, Jan and Marder, Todd B.}, title = {Mechanistic and Kinetic Factors of ortho-Benzyne Formation in Hexadehydro-Diels-Alder (HDDA) Reactions}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {30}, doi = {10.1002/chem.202100608}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239006}, pages = {7978 -- 7991}, year = {2021}, abstract = {With the rapid development of the hexadehydro-Diels-Alder reaction (HDDA) from its first discovery in 1997, the question of whether a concerted or stepwise mechanism better describes the thermally activated formation of ortho-benzyne from a diyne and a diynophile has been debated. Mechanistic and kinetic investigations were able to show that this is not a black or white situation, as minor changes can tip the balance. For that reason, especially, linked yne-diynes were studied to examine steric, electronic, and radical-stabilizing effects of their terminal substituents on the reaction mechanism and kinetics. Furthermore, the influence of the nature of the linker on the HDDA reaction was explored. The more recently discovered photochemical HDDA reaction also gives ortho-arynes, which display the same reactivity as the thermally generated ones, but their formation might not proceed by the same mechanism. This minireview summarizes the current state of mechanistic understanding of the HDDA reaction.}, language = {en} } @phdthesis{Maier2021, author = {Maier, Jan Richard}, title = {Investigations of Metal-free Cannibalistic Hexadehydro-Diels-Alder and Pt-catalyzed Dimerization Reactions of Linked Aryl Bisdiynes}, doi = {10.25972/OPUS-24041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240411}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The introductory chapter reviews the current state of mechanistic understanding of the hexadehydro-Diels-Alder (HDDA) reaction. With the rapid development of the HDDA reaction from its first discovery in 1997, the question of whether a concerted or stepwise mechanism better describes the thermally activated formation of ortho-benzyne from a diyne and a diynophile has been debated. Mechanistic and kinetic investigations were able to show that this is not a black or white situation, as minor changes can tip the balance. In chapter 2 of this thesis, the catalytic process leading from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne to fully-substituted naphthalene and azulene derivatives, by two different platinum-catalyzed dimerization pathways, was investigated. In chapter 3, the cannibalistic self-trapping reaction of an ortho-benzyne derivative generated from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne in an HDDA reaction was investigated. Without adding any specific trapping agent, the highly reactive benzyne is trapped by another bisdiyne molecule in at least three different modes. In chapter 4 direct UV/VIS spectroscopic evidence for the existence of an o-benzyne in solution is reported, and the dynamics of its formation in a photo-induced reaction are established. For this purpose, 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne was investigated, using femtosecond transient absorption spectroscopy in the ultraviolet/visible region. In chapter 5, following the isolation and characterization of the reaction products discussed in chapter 3, further species resulting from reactions of the highly reactive ortho-benzyne derivative were identified.}, subject = {Diels-Alder-Reaktion}, language = {en} } @article{MatlerArrowsmithSchorretal.2021, author = {Matler, Alexander and Arrowsmith, Merle and Schorr, Fabian and Hermann, Alexander and Hofmann, Alexander and Lenczyk, Carsten and Braunschweig, Holger}, title = {Reactivity of Terminal Iron Borylenes and Bis(borylenes) with Carbodiimides: Cycloaddition, Metathesis, Insertion and C-H Activation Pathways}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {45}, doi = {10.1002/ejic.202100629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257397}, pages = {4619-4631}, year = {2021}, abstract = {The reactions of carbodiimides with the iron arylborylene complex [Fe=BDur(CO)\(_{3}\)(PMe\(_{3}\))] (Dur=2,3,5,6-Me\(_{4}\)C\(_{6}\)H) and the iron bis(borylene) complex [Fe{=BDur}{=BN(SiMe\(_{3}\))\(_{2}\)}(CO)\(_{3}\)] yield a wide variety of temperature-dependent products, including known FeBNC and novel FeBNB metallacycles, complexes of N-heterocyclic boracarbene and spiro-boracarbene ligands and a unique 1,3,2,4-diazadiborolyl pianostool complex, characterized by NMR spectroscopy and X-ray crystallography. The product distributions can be rationalized by considering sequences of cycloaddition, metathesis, insertion, and C-H activation pathways mainly governed by sterics.}, language = {en} } @article{MerzMerzKirchneretal.2021, author = {Merz, Viktor and Merz, Julia and Kirchner, Maximilian and Lenhart, Julian and Marder, Todd B. and Krueger, Anke}, title = {Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) Ions}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100594}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256803}, pages = {8118-8126}, year = {2021}, abstract = {Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu\(^{2+}\), Pb\(^{2+}\) and Hg\(^{2+}\) in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na\(^{+}\), K\(^{+}\), Ca\(^{2+}\) and Mg\(^{2+}\). The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.}, language = {en} } @phdthesis{Ming2021, author = {Ming, Wenbo}, title = {Synthesis of α‑Aminoboronates and PBP Pincer Palladium Boryl Complexes}, doi = {10.25972/OPUS-19832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The first Borono-Strecker reaction has been developed to synthesize α-aminoboronates via a multicomponent reaction of readily available carbonyl compounds (aldehydes and ketones), amines and B2pin2. The preparation of α-amino cyclic boronates can be achieved via multicomponent coupling of salicylaldehydes, amines, and B2(OH)4. In addition, the diazaborole-based PBP pincer palladium chloride and the diazaborole-based PBP pincer palladium trifluoromethanesulfonate complexes were synthesized and fully characterized for the first time, and used as catalysts for Suzuki-Miyaura cross-coupling reactions.}, language = {en} } @article{OberdorfHanftRamleretal.2021, author = {Oberdorf, Kai and Hanft, Anna and Ramler, Jacqueline and Krummenacher, Ivo and Bickelhaupt, Matthias and Poater, Jordi and Lichtenberg, Crispin}, title = {Bismuth Amides Mediate Facile and Highly Selective Pn-Pn Radical-Coupling Reactions (Pn=N, P, As)}, series = {Angewandte Chemie, International Edition}, volume = {60}, journal = {Angewandte Chemie, International Edition}, number = {12}, doi = {10.1002/anie.202015514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236582}, pages = {6441-6445}, year = {2021}, abstract = {The controlled release of well-defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr\(_2\))\(_3\)] readily release aminyl radicals [NAr\(_2\)]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar\(_2\)N-NAr\(_2\), as a result of highly selective N-N coupling. The exploitation of facile homolytic Bi-Pn bond cleavage for Pn-Pn bond formation was extended to higher homologues of the pnictogens (Pn=N-As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR\(_2\) to give R\(_2\)Pn-PnR\(_2\). Analyses by NMR and EPR spectroscopy, single-crystal X-ray diffraction, and DFT calculations reveal low Bi-N homolytic bond-dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions.}, language = {en} } @article{PhilippKrahfussRadackietal.2021, author = {Philipp, Michael S. M. and Krahfuss, Mirjam J. and Radacki, Krzysztof and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {38}, doi = {10.1002/ejic.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257408}, pages = {4007-4019}, year = {2021}, abstract = {A systematic study on Lewis-acid/base adducts of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with antimony(III) chlorides of the general formula SbCl\(_{2}\)R (R=Cl, Ph, Mes) is presented. The reaction of the NHCs Me\(_{2}\)Im\(^{Me}\) (1,3,4,5-tetra-methyl-imidazolin-2-ylidene), iPr\(_{2}\)Im\(^{Me}\) (1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene), Mes\(_{2}\)Im, Dipp\(_{2}\)Im (R\(_{2}\)Im=1,3-di-organyl-imidazolin-2-ylidene; Mes=2,4,6-trimethylphenyl, Dipp=2,6-di-isopropylphenyl) and cAAC\(^{Me}\) with antimony(III) compounds SbCl\(_{2}\)R (R=Cl (1), Ph (2) and Mes (3)) yields the adducts NHC ⋅ SbCl\(_{2}\)R (R=Cl (4), Ph (5) and Mes (6); NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c) and Mes\(_{2}\)Im (d)) and cAAC\(^{Me}\) ⋅ SbCl\(_{2}\)R (R=Cl (4 e) and Ph (5 e)). Thermal treatment of (Dipp\(_{2}\)Im) ⋅ SbCl\(_{2}\)Ar (Ar=Ph (5 c) and Mes (6 c)) in benzene leads to isomerization to the backbone coordinated \(^{a}\)NHC-adduct \(^{a}\)Dipp\(_{2}\)Im ⋅ SbCl\(_{2}\)Ar (Ar=Mes (7) and Ph (8)) (\(^{"a"}\) denotes "abnormal" coordination mode of the NHC) in high yields. One of the chloride substituents at antimony of 7 can be abstracted by GaCl3 or Ag[BF\(_{4}\)] to obtain the imidazolium salts [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][BF\(_{4}\)] (9) and [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][GaCl\(_{4}\)] (10).}, language = {en} } @article{RamlerFantuzziGeistetal.2021, author = {Ramler, Jaqueline and Fantuzzi, Felipe and Geist, Felix and Hanft, Anna and Braunschweig, Holger and Engels, Bernd and Lichtenberg, Crispin}, title = {The dimethylbismuth cation: entry into dative Bi-Bi bonding and unconventional methyl exchange}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256543}, pages = {24388-24394}, year = {2021}, abstract = {The dimethyl bismuth cation, [BiMe\(_2\)(SbF\(_6\))], has been isolated and characterized. Reaction with BiMe\(_3\) allows access to the first compound featuring Bi→Bi donor-acceptor bonding. In solution, dynamic behavior with methyl exchange via an unusual S\(_E\)2 mechanism is observed, underlining the unique properties of bismuth species as soft Lewis acids with the ability to undergo reversible Bi-C bond cleavage.}, language = {en} } @phdthesis{Riensch2021, author = {Riensch, Nicolas Alexander}, title = {Silicon/Boron Exchange Routes to Novel Inorganic-Organic Hybrid Molecules, Oligomers, Polymers and Macrocycles}, doi = {10.25972/OPUS-23865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238657}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Industrially used semiconducting materials, building blocks of modern electronics and computer industry, are mostly based on inorganic, crystalline solids, which have the drawback of relatively high production costs. As an alternative, organic pi-conjugated systems show enhanced flexibility and processability as well as the opportunity to obtain light-weight materials. They have emerged as attractive candidates, especially since elements beyond hydrogen and carbon can be used to create pi-conjugated frameworks. In recent years, pi-conjugated oligomers and polymers with tricoordinate boron centers incorporated into the main chain of such organic polymers have attracted considerable attention as the interaction of the vacant p orbital on boron with an adjacent pi system of the chain leads to extended conjugated materials. These materials show intriguing optical and electronic properties and potential applications in organic electronics and optoelectronics (OLEDs, OFETs, photovoltaics) or as sensory materials. In this thesis, a catalytic Si/B exchange reaction protocol is used as a facile and highly effective B-C bond formation method to synthesize organoboron molecules, oligomers, polymers and macrocycles. This reaction is applied to synthesize a series of thienyl- and furylborane based materials. Special focus is on furylborane based materials, which, in general, have been only scarcely explored so far. This is mainly due to synthetic challenges since furan decomposes readily in the presence of light and oxygen. Our mild and highly selective reaction protocol in combination with sufficient kinetic protection of the boron centers gives access to a series of extended organoboranes featuring furylborane units in the main chain. Furthermore, kinetically stabilized furylboranes are established as highly robust and versatile building blocks for pi conjugated materials. The obtained materials reveal remarkable luminescence properties. The scope of potential starting materials was investigated by a catalyst screening, demonstrating that the Si/B exchange reaction can also be performed for less reactive aryldichloroboranes. Furthermore, borazine-based hybrid cyclomatrix microspheres have been synthesized via a Si/B exchange condensation reaction under precipitation polymerization conditions. Finally, synthetic routes to tetrabora- and diboraporphyrinogens were attempted in a multi-step reaction procedure. In the case for tetraboraporphyrinogens, the final macrocyclization reaction under pseudo high-dilution conditions afforded a mixture of macrocycles with different ring sizes. UV-vis and fluorescence spectroscopic analysis indicated significant differences in comparison to their linear congeners.}, subject = {Bororganische Verbindungen}, language = {en} } @article{RienschSwobodaLiketal.2021, author = {Riensch, Nicolas Alexander and Swoboda, Lukas and Lik, Artur and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Conjugated Bis(triarylboranes) with Disconnected Conjugation}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {5}, doi = {10.1002/zaac.202000476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258020}, pages = {421-424}, year = {2021}, abstract = {A series of methylene-bridged bis(triarylboranes) has been synthesized via two complementary routes using metal-free catalytic Si/B exchange condensation under mild conditions. The title compounds comprise two borane moieties that show effective internal π-conjugation involving the respective boron centers and the adjacent hetaryl groups. Conjugation between both borane units, however, is disrupted by the aliphatic linker. Cyclic voltammetry revealed minimal electronic communication between the boron centers, as evidenced by two closely spaced reduction processes. The UV-vis spectra showed bathochromic shifted absorption bands compared to related monoboranes, which is attributed to the methylene bridge. A further red-shift results upon introduction of methyl or SiMe\(_3\) groups at the terminal thiophene rings.}, language = {en} } @article{RoyTroesterFantuzzietal.2021, author = {Roy, Dipak Kumar and Tr{\"o}ster, Tobias and Fantuzzi, Felipe and Dewhurst, Rian D. and Lenczyk, Carsten and Radacki, Krzysztof and Pranckevicius, Conor and Engels, Bernd and Braunschweig, Holger}, title = {Isolation and Reactivity of an Antiaromatic s-Block Metal Compound}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {7}, doi = {10.1002/anie.202014557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224447}, pages = {3812 -- 3819}, year = {2021}, abstract = {The concepts of aromaticity and antiaromaticity have a long history, and countless demonstrations of these phenomena have been made with molecules based on elements from the p, d, and f blocks of the periodic table. In contrast, the limited oxidation-state flexibility of the s-block metals has long stood in the way of their participation in sophisticated π-bonding arrangements, and truly antiaromatic systems containing s-block metals are altogether absent or remain poorly defined. Using spectroscopic, structural, and computational techniques, we present herein the synthesis and authentication of a heterocyclic compound containing the alkaline earth metal beryllium that exhibits significant antiaromaticity, and detail its chemical reduction and Lewis-base-coordination chemistry.}, language = {en} }