@unpublished{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142500}, pages = {4}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+.}, subject = {Diborane}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Dellermann, Theresa and Hammond, Kai}, title = {Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds}, series = {Chemistry, A European Journal}, volume = {22}, journal = {Chemistry, A European Journal}, number = {48}, doi = {10.1002/chem.201604094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139364}, pages = {17169 -- 17172}, year = {2016}, abstract = {Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride.}, subject = {Diborane}, language = {en} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @phdthesis{WuertembergerPietsch2017, author = {W{\"u}rtemberger-Pietsch, Sabrina}, title = {Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Anionic Adducts Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]-, [OtBu]-), a phenoxy-group (L = [4-tBuC6H4O]-) and fluoride (L = [F]-, with [nBu4N]+ as the counter ion) as Lewis-bases. Neutral Adducts Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si. Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B-B bond cleavage can be very facile processes.}, subject = {Addukt}, language = {en} }