@phdthesis{Elsner2022, author = {Elsner, Clara Dorothea}, title = {Ultrastructural analysis of biogenesis and release of endothelial extracellular vesicles}, doi = {10.25972/OPUS-28852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Extracellular vesicle (EV)-mediated intercellular communication through exosomes, microvesicles (MVs) and apoptotic bodies has been shown to be implicated in various physiological as well as pathological processes such as the development and progression of atherosclerosis. While the cellular machinery controlling EV formation and composition has been studied extensively, little is known about the underlying morphological processes. This study focuses on a detailed ultrastructural analysis of the different steps of EV formation and release in Myocardial Endothelial (MyEnd) and Aortic Endothelial (AoEnd) cells cultured under serum starvation and inflammatory stimulation with TNF-α. Detailed morphological analyses were conducted applying and comparing different high- resolution light and electron microscopic methods. In this study, we could depict all steps of MV biogenesis named in literature. However, during the study of exosome biogenesis, we discovered a yet undescribed process: Instead of a direct fusion with the plasma membrane, multivesicular bodies were incorporated into a new distinct cellular compartment bound by fenestrated endothelium first. This may present a novel step in exosome biogenesis and warrants further study. Regarding the conditions of cell cultivation, we observed that the commonly used serum starvation causes MyEnd cells, but not AoEnd cells, to enter apoptosis after 48 hours. When preparing functional EV studies, we therefore recommend assessing the morphological condition of the serum-starved cells at different cultivation points first. When evaluating MV production, a statistical analysis showed that the more time AoEnd cells spent in cultivation under serum starvation, the higher the percentage of MV producing cells. However, additional TNF-α stimulation induced a significantly higher MV production than serum starvation alone. Lastly, our results show that TNF-α stimulation of AoEnd cells in vitro leads to the upregulation of CD44, an adhesion molecule critical in the early stages of atherosclerosis. CD44 was then depicted on the surface of generated MVs and exosomes. We conclude that under inflammatory conditions, EVs can mediate the transfer of CD44 from endothelial cells to target cells. This could be a novel mechanism by which MVs contribute to the development and progression of atherosclerotic disease and should be clarified by further studies.}, subject = {Vesikel}, language = {en} } @phdthesis{Krones2022, author = {Krones, David}, title = {The Role of Acid Sphingomyelinase in \(Staphylococcus\) \(aureus\) Infection of Endothelial Cells}, doi = {10.25972/OPUS-29049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Staphylococcus aureus is a human bacterial pathogen responsible for a variety of diseases including bacterial pneumonia and sepsis. Recent studies provided an explanation, how S. aureus and its exotoxins contribute to the degradation of endothelial junction proteins and damage lung tissue [4]. Previous findings were indicating an involvement of acid sphingomyelinase (ASM) activity in cell barrier degradation [5]. In the presented study the impact of singular virulence factors, such as staphylococcal α-toxin, on in vitro cell barrier integrity as well as their ability to elicit an activation of ASM were investigated. Experiments with bacterial supernatants performed on human endothelial cells demonstrated a rapid dissociation after treatment, whereas murine endothelial cells were rather resistant against cell barrier degradation. Furthermore, amongst all tested staphylococcal toxins it was found that only α-toxin had a significant impact on endothelial junction proteins and ASM activity. Ablation of this single toxin was sufficient to protect endothelial cells from cell barrier degradation and activation of ASM was absent. In this process it was verified, that α-toxin induces a recruitment of intracellular ASM, which is accompanied by rapid and oscillating changes in cytoplasmic Ca2+ concentration and an increased exposure of Lysosomal associated membrane protein 1 (LAMP1) on the cell surface. Recruitment of lysosomal ASM is associated, among other aspects, to plasma membrane repair and was previously described to be involved with distinct pathogens as well as other pore forming toxins (PFT). However, with these findings a novel feature for α-toxin has been revealed, indicating that the staphylococcal PFT is able to elicit a similar process to previously described plasma membrane repair mechanisms. Increased exposure and intake of surface membrane markers questioned the involvement of ASM activity in S. aureus internalization by non-professional phagocytes such as endothelial cells. By modifying ASM expression pattern as well as application of inhibitors it was possible to reduce the intracellular bacterial count. Thus, a direct connection between ASM activity and S. aureus infection mechanisms was observed, therefore this study exemplifies how S. aureus is able to exploit the host cell sphingolipid metabolism as well as benefit of it for invasion into non-professional phagocytic cells}, subject = {Staphylococcus aureus}, language = {en} } @article{McCarronWangSirenetal.1994, author = {McCarron, R. M. and Wang, L. and Sir{\´e}n, Anna-Leena and Spatz, M. and Hallenbeck, J. M.}, title = {Adhesion molecules on normotensive and hypertensive rat brain endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86819}, year = {1994}, abstract = {The intercellular adhesion of circulating leukocytes to vascular endothellum ls a prerequisite for leukocyte emigration from the blood to extravascular tlssues. This process is facllltated by adhesion molecules on the surfaces of both the vascular endothelial cells and the leukocytes. The experiments presented here demonstrate for the first time that the leukocyte adhesion receptor, intercellular adhesion molecule-1, is constitutively expressed on cultured cerebromicrovascular endothelial cell lines derived from both spontaneously hypertensive (SHR) rats and normotensive WistarKyoto (WKY) rats. Both cultures contained simliar numbers of cells constitutively expressing this adhesion molecule (31.4\% and 29.6\%, respectlvely). Adhesion molecule expression was up-regulated by interleukin-1 ß, tumor necrosis factor-a, interferon-y and lipopolysaccharide in a dose- and time-dependent manner. Both cultures exhibited similar maximum levels of adhesion molecule up-regulation to optimal concentrations of all three cytokines. However, SHR endothelial cells were moresensitive to all three cytokines; significantly higher levels of intercellular adhesion molecule-1 expresslon were seen on SHR as opposed to WKY endothelial cells cultured with sub-optimal cytokine concentrations. It was also observed that lipopolysaccharide up-regulated intercellular adhesion molecule-1 expression on SHR endothelial cells to a greater extent than on WKY endothelial cells. The findings that intercellular adhesion molecule-1 can be up-regulated to a greater degree on SHR endothelial cells may have important implications for in vivo perivascular leukocyte accumulation under hypertensive conditions. These observations indicate a possible mechanism by which hypertension may predispose to the development of disorders such as atherosclerosis and stroke.}, subject = {Endothelzelle}, language = {en} }