@phdthesis{Ashour2020, author = {Ashour, DiyaaEldin}, title = {Kinetics and timing of IL-12 production by dendritic cells for Th1 polarization \(in\) \(vivo\)}, doi = {10.25972/OPUS-17948}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Auf Dendritische Zellen (DCs) basierende Vakzinen h{\"a}ngen von der Qualit{\"a}t der DC-Reifung ab, um Antigenpr{\"a}sentation, Kostimulation, Lymphknotenmigration und, im Faller einer T-Helfer-1 (Th1) Polarisierung, die Freisetzung von IL-12 zu induzieren. Die Herstellung des heterodimeren IL-12p70 durch injizierte DC wurde klassisch als Schl{\"u}sselfaktor beschrieben, der f{\"u}r die Erzeugung einer polarisierten Th1 Immunreaktion erforderlich ist. Dennoch induzieren DCs, die IL-12 nicht ausscheiden k{\"o}nnen (z. B. nach Reifung des Cytokin-Cocktails), Th1 polarisierte Immunantwortenin M{\"a}usen und Menschen. Da zuvor auch beschrieben wurde, dass DCs in der Lage sind, andere DCs auf Bystander-Weise zu aktivieren, haben wir hier die DC-Quelle der IL-12 Produktion f{\"u}r die Th1-Polarisation in einem murinen DC-Vakzinemodell untersucht. Die Migration der injizierten, aus murinem Knochenmark generierten DCs (BM-DCs) war f{\"u}r den Antigentransport in den Lymphknoten wesentlich. Sie trugen jedoch nur teilweise zur Antigenpr{\"a}sentation bei und induzierten nur einen nicht polarisierten Th0-Zustand der T-Zellen, die IL-2 produzierten, aber kein IFN-. Stattdessen deuten die Daten daraufhin, dass endogene dermale migrierende XCR1+ DCs als Bystander-DCs zur Antigenpr{\"a}sentation beitragen und IL-12 f{\"u}r die Th1 Polarisation bereitstellten. Die genetische Ablation von migrierenden DCs und speziell von XCR1+ migrierenden DCs hebt das Th1 Priming vollst{\"a}ndig auf, Die Kinetik der Wechselwirkungen in den drainierenden Lymphknoten erfolgt schrittweise, indem i) injizierte DCs mit verwandten T-Zellen, ii) injizierte DCs mit Bystander XCR1+ DCs und iii) Bystander XCR1+ DCs mit T-Zellen in Kontakt treten. Das Transkriptom der Bystander-DCs zeigte eine Herunterregulierung von Treg- und Th2/Th9-induzierenden Genen und eine Hochregulierung der f{\"u}r die Th1- Induktion erforderlichen Gene. Zusammen zeigen diese Daten, dass injizierte reife migrierende BM-DCs das T-Zell-Priming und die Bystander-DC-Aktivierung steuern, nicht jedoch die Th1-Polarisation, die durch endogene IL-12p70+ XCR1+ Bystander-DCs vermittelt wird. Unsere Ergebnisse sind von Bedeutung f{\"u}r klinische Studien mit Vakzine-DCs, bei denen endogene DCs durch eine Chemotherapie funktionell beeintr{\"a}chtigt werden k{\"o}nnen.}, subject = {Immunologie}, language = {en} } @phdthesis{Hotz2008, author = {Hotz, Christian}, title = {Improvement of Salmonella vaccine strains for cancer immune therapy based on secretion or surface display of antigens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Cancer immune therapy represents a promising alternative to conventional anti tumour therapy like radiation, surgical excision of the tumour or classical chemotherapy. The biggest advantage of cancer immune therapy is specificity, achieved by targeting tumour-associated antigens with the effector arms of the host immune system. This is believed to result in less adverse effects than standard therapy and reaches presumably also metastatic lesions at distant sites from the primary tumour. However, cancer immune therapy by vaccination against tumour antigens failed to translate into clinical success, yet. Furthermore, despite tremendous clinical efforts malignant disease still results in high mortalities giving rise to the need for novel vaccination-based therapies against cancer. An interesting approach in this respect is the use of bacteria like attenuated salmonellae as carriers for heterologous cancer antigens. In numerous preclinical studies Salmonella-based vaccines could elicit cell mediated immune responses of the CD4+ and CD8+ type against own and heterologous antigens which make them ideally suited for anti tumour therapy. Special delivery systems in Salmonella carriers like surface display or secretion of antigens were shown to be advantageous for the immunological outcome. This work focussed on developing novel Salmonella carriers for immune therapy against cancer. In a first project, TolC, a multifunctional outer membrane protein of E. coli was utilized as membrane anchor for 3 heterologous antigens. Respective TolC fusion proteins encoded on plasmids were analysed for expression, functionality and plasmid stability in different engineered Salmonella strains. The amount of membrane localized recombinant TolC was enhanced in tolC-deficient strains. Furthermore, fusion proteins were functional and plasmid stability was very high in vitro and in vivo. Disappointingly, neither specific CD4+/CD8+ T-cell responses against the model antigen ovalbumin nor CD8+ responses against the cancer antigen BRAFV600E were detectable in murine model systems. However, mice immunized with Salmonella strains displaying an immunodominant epitope of the cancer related prostate specific antigen (PSA) were partially protected from subsequent tumour challenge with a PSA expressing melanoma cell line. Tumour growth in mice immunized with the respective strain was significantly decelerated compared to controls, thus indicating that this surface display system confers protective immunity against tumours. In a second study, the approved typhoid vaccine strain Salmonella enterica serovar Typhi Ty21a (Ty21a) was improved for the hemolysin type I secretion system of E. coli. This secretion system is widely used for heterologous antigen delivery in live bacterial vaccines. It was demonstrated throughout this work that a mutation of rpoS in Ty21a correlated with decreased ability for hemolysin secretion compared to other Salmonella strains. Complementation with rpoS or the presumed downstream target of rpoS, rfaH resulted in enhanced expression and secretion of heterologous hemolysin in Ty21a. Presumably by raising the amount of free antigen, rfaHcomplemented Ty21a elicited higher antibody titres against heterologous hemolysin in immunized mice than controls and even rpoS-positive Ty21a. Therefore, rfaHcomplemented Ty21a could form the basis of a novel generation of vaccines for human use based on (cancer) antigen secretion.}, subject = {Impfstoff}, language = {en} } @phdthesis{Kaiser2012, author = {Kaiser, Fabian Marc Philipp}, title = {Analysis of Cross-Clade Neutralizing Antibodies against HIV-1 Env Induced by Immunofocusing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75494}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Despite intense research efforts, a safe and effective HIV-1/AIDS vaccine still remains far away. HIV-1 escapes the humoral immune response through various mechanisms and until now, only a few nAbs have been identified. A promising strategy to identify new epitopes that may elicit such nAbs is to dissect and analyze the humoral immune response of sera with broadly reactive nAbs. The identified epitopes recognized by these antibodies might then be incorporated into a vaccine to elicit similar nAbs and thus provide protection from HIV-1 infection. Using random peptide phage display libraries, the Ruprecht laboratory has identified the epitopes recognized by polyclonal antibodies of a rhesus monkey with high-titer, broadly reactive nAbs that had been induced after infection with a SHIV encoding env of a recently transmitted HIV-1 clade C. The laboratory analyzed phage peptide inserts for conformational and linear homology with computational assistance. Several of the identified peptides mimicked domains of the original HIV-1 clade Env, such as conformational V3 loop epitopes and the conserved linear region of the gp120 C-terminus. As part of this work, these mimotopes were analyzed for cross-reactivity with other sera obtained from rhesus monkeys with nAbs and antibody recognition was shown for several mimotopes, particularly those representing the V3 loop. In addition, these mimotopes were incorporated into a novel DNA prime/phage boost strategy to analyze the immunogenicity of such phage-displayed peptides. Mice were primed only once with HIV-1 clade C gp160 DNA and subsequently boosted with mixtures of recombinant phages. This strategy was designed to focus the humoral immune response on a few, selected Env epitopes (immunofocusing) and induced HIV-1 clade C gp160 binding antibodies and cross-clade nAbs. Furthermore, the C-terminus of gp120, a conserved HIV Env region, was linked to the induction of nAbs for the first time. The identification of such conserved antigens may lead to the development of a vaccine that is capable of inducing broadly reactive nAbs that might confer protection form HIV-1 infection.}, subject = {Antik{\"o}rper}, language = {en} } @article{SinghVermaAkhoonetal.2016, author = {Singh, Krishna P. and Verma, Neeraj and Akhoon, Bashir A . and Bhatt, Vishal and Gupta, Shishir K. and Gupta, Shailendra K. and Smita, Suchi}, title = {Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains}, series = {3 Biotech}, volume = {6}, journal = {3 Biotech}, doi = {10.1007/s13205-015-0352-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191056}, pages = {10}, year = {2016}, abstract = {Human papilloma virus (HPV) is the primary etiological agent responsible for cervical cancer in women. Although in total 16 high-risk HPV strains have been identified so far. Currently available commercial vaccines are designed by targeting mainly HPV16 and HPV18 viral strains as these are the most common strains associated with cervical cancer. Because of the high level of antigenic specificity of HPV capsid antigens, the currently available vaccines are not suitable to provide cross-protection from all other high-risk HPV strains. Due to increasing reports of cervical cancer cases from other HPV high-risk strains other than HPV16 and 18, it is crucial to design vaccine that generate reasonable CD8+ T-cell responses for possibly all the high-risk strains. With this aim, we have developed a computational workflow to identify conserved cross-clade CD8+ T-cell HPV vaccine candidates by considering E1, E2, E6 and E7 proteins from all the high-risk HPV strains. We have identified a set of 14 immunogenic conserved peptide fragments that are supposed to provide protection against infection from any of the high-risk HPV strains across globe.}, language = {en} } @article{vonKriesWeissFalkenhorstetal.2011, author = {von Kries, R{\"u}diger and Weiss, Susanne and Falkenhorst, Gerhard and Wirth, Stephan and Kaiser, Petra and Huppertz, Hans-Iko and Tenenbaum, Tobias and Schroten, Horst and Streng, Andrea and Liese, Johannes and Shai, Sonu and Niehues, Tim and Girschick, Hermann and Kuscher, Ellen and Sauerbrey, Axel and Peters, Jochen and Wirsing von Koenig, Carl Heinz and R{\"u}ckinger, Simon and Hampl, Walter and Michel, Detlef and Mertens, Thomas}, title = {Post-Pandemic Seroprevalence of Pandemic Influenza A (H1N1) 2009 Infection (Swine Flu) among Children < 18 Years in Germany}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0023955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141698}, pages = {e23955}, year = {2011}, abstract = {Background: We determined antibodies to the pandemic influenza A (H1N1) 2009 virus in children to assess: the incidence of (H1N1) 2009 infections in the 2009/2010 season in Germany, the proportion of subclinical infections and to compare titers in vaccinated and infected children. Methodology/Principal Findings: Eight pediatric hospitals distributed over Germany prospectively provided sera from in-or outpatients aged 1 to 17 years from April 1(st) to July 31(st) 2010. Vaccination history, recall of infections and sociodemographic factors were ascertained. Antibody titers were measured with a sensitive and specific in-house hemagglutination inhibition test (HIT) and compared to age-matched sera collected during 6 months before the onset of the pandemic in Germany. We analyzed 1420 post-pandemic and 300 pre-pandemic sera. Among unvaccinated children aged 1-4 and 5-17 years the prevalence of HI titers (>= 1:10) was 27.1\% (95\% CI: 23.5-31.3) and 53.5\% (95\% CI: 50.9-56.2) compared to 1.7\% and 5.5\%, respectively, for pre-pandemic sera, accounting for a serologically determined incidence of influenza A (H1N1) 2009 during the season 2009/2010 of 25,4\% (95\% CI : 19.3-30.5) in children aged 1-4 years and 48.0\% (95\% CI: 42.6-52.0) in 5-17 year old children. Of children with HI titers >= 1: 10, 25.5\% (95\% CI: 22.5-28.8) reported no history of any infectious disease since June 2009. Among vaccinated children, 92\% (95\%-CI: 87.0-96.6) of the 5-17 year old but only 47.8\% (95\%-CI: 33.5-66.5) of the 1-4 year old children exhibited HI titers against influenza A virus (H1N1) 2009. Conclusion: Serologically determined incidence of influenza A (H1N1) 2009 infections in children indicates high infection rates with older children (5-17 years) infected twice as often as younger children. In about a quarter of the children with HI titers after the season 2009/2010 subclinical infections must be assumed. Low HI titers in young children after vaccination with the AS03(B)-adjuvanted split virion vaccine need further scrutiny.}, language = {en} }