@article{DimopoulosWeiselSongetal.2015, author = {Dimopoulos, Meletios A. and Weisel, Katja C. and Song, Kevin W. and Delforge, Michel and Karlin, Lionel and Goldschmidt, Hartmut and Moreau, Philippe and Banos, Anne and Oriol, Albert and Garderet, Laurent and Cavo, Michele and Ivanova, Valentina and Alegre, Adrian and Martinez-Lopez, Joaquin and Chen, Christine and Spencer, Andrew and Knop, Stefan and Bahlis, Nizar J. and Renner, Christoph and Yu, Xin and Hong, Kevin and Sternas, Lars and Jacques, Christian and Zaki, Mohamed H. and San Miguel, Jesus F.}, title = {Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone}, series = {Haematologica}, volume = {100}, journal = {Haematologica}, number = {10}, doi = {10.3324/haematol.2014.117077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140349}, pages = {1327 -- 1333}, year = {2015}, abstract = {Patients with refractory or relapsed and refractory multiple myeloma who no longer receive benefit from novel agents have limited treatment options and short expected survival. del(17p) and t(4;14) are correlated with shortened survival. The phase 3 MM-003 trial demonstrated significant progression-free and overall survival benefits from treatment with pomalidomide plus low-dose dexamethasone compared to high-dose dexamethasone among patients in whom bortezomib and lenalidomide treatment had failed. At an updated median follow-up of 15.4 months, the progression-free survival was 4.0 versus 1.9 months (HR, 0.50; P<0.001), and median overall survival was 13.1 versus 8.1 months (HR, 0.72; P=0.009). Pomalidomide plus low-dose dexamethasone, compared with high-dose dexamethasone, improved progression-free survival in patients with del(17p) (4.6 versus 1.1 months; HR, 0.34; P < 0.001), t(4;14) (2.8 versus 1.9 months; HR, 0.49; P=0.028), and in standard-risk patients (4.2 versus 2.3 months; HR, 0.55; P<0.001). Although the majority of patients treated with high-dose dexamethasone took pomalidomide after discontinuation, the overall survival of patients treated with pomalidomide plus low-dose dexamethasone or highdose dexamethasone was 12.6 versus 7.7 months (HR, 0.45; P=0.008) in patients with del(17p), 7.5 versus 4.9 months (HR, 1.12; P=0.761) in those with t(4;14), and 14.0 versus 9.0 months (HR, 0.85; P=0.380) in standard-risk subjects. The overall response rate was higher in patients treated with pomalidomide plus low-dose dexamethasone than in those treated with high-dose dexamethasone both among standard-risk patients (35.2\% versus 9.7\%) and those with del(17p) (31.8\% versus 4.3\%), whereas it was similar in patients with t(4; 14) (15.9\% versus 13.3\%). The safety of pomalidomide plus low-dose dexamethasone was consistent with initial reports. In conclusion, pomalidomide plus low-dose dexamethasone is efficacious in patients with relapsed/refractory multiple myeloma and del(17p) and/or t(4;14).}, language = {en} } @article{HornBausingerStaigeretal.2014, author = {Horn, Heike and Bausinger, Julia and Staiger, Annette M. and Sohn, Maximilian and Schmelter, Christopher and Gruber, Kim and Kalla, Claudia and Ott, M. Michaela and Rosenwald, Andreas and Ott, German}, title = {Numerical and Structural Genomic Aberrations Are Reliably Detectable in Tissue Microarrays of Formalin-Fixed Paraffin-Embedded Tumor Samples by Fluorescence In-Situ Hybridization}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {4}, issn = {1932-6203}, doi = {10.1371/journal.pone.0095047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116706}, pages = {e95047}, year = {2014}, abstract = {Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL) and six malignant mesothelioma (MM) samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94\%. FISH results regarding translocations matched karyotyping data in 93\%. As for chromosomal deletions, sectioning artefacts occurred in 17\% to 25\% of cells, suggesting that the proportion of cells showing deletions should exceed 25\% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.}, language = {en} } @article{ZahnleiterUebeEkicietal.2013, author = {Zahnleiter, Diana and Uebe, Steffen and Ekici, Arif B. and Hoyer, Juliane and Wiesener, Antje and Wieczorek, Dagmar and Kunstmann, Erdmute and Reis, Andr{\´e} and Doerr, Helmuth-Guenther and Rauch, Anita and Thiel, Christian T.}, title = {Rare Copy Number Variants Are a Common Cause of Short Stature}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127645}, pages = {e1003365}, year = {2013}, abstract = {Human growth has an estimated heritability of about 80\%-90\%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs \((p-value <1 x 10^{-7})\). In a gene-based analysis of all non-polymorphic CNVs >50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p < 0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p < 0.01). Eleven (55\%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10\% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation.}, language = {en} }