@article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{FeldheimKesslerSchmittetal.2020, author = {Feldheim, Jonas and Kessler, Almuth F. and Schmitt, Dominik and Salvador, Ellaine and Monoranu, Camelia M. and Feldheim, Julia J. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma — A New Disease Biomarker?}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203648}, year = {2020}, abstract = {Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients' clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients' survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response.}, language = {en} } @article{FeldheimWendLaueretal.2022, author = {Feldheim, Jonas and Wend, David and Lauer, Mara J. and Monoranu, Camelia M. and Glas, Martin and Kleinschnitz, Christoph and Ernestus, Ralf-Ingo and Braunger, Barbara M. and Meybohm, Patrick and Hagemann, Carsten and Burek, Malgorzata}, title = {Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284433}, year = {2022}, abstract = {Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.}, language = {en} } @article{KesslerFeldheimSchmittetal.2020, author = {Kessler, Almuth F. and Feldheim, Jonas and Schmitt, Dominik and Feldheim, Julia J. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Monopolar Spindle 1 Kinase (MPS1/TTK) mRNA Expression is Associated with Earlier Development of Clinical Symptoms, Tumor Aggressiveness and Survival of Glioma Patients}, series = {Biomedicines}, volume = {8}, journal = {Biomedicines}, number = {7}, doi = {10.3390/biomedicines8070192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236105}, year = {2020}, abstract = {Inhibition of the protein kinase MPS1, a mitotic spindle-checkpoint regulator, reinforces the effects of multiple therapies against glioblastoma multiforme (GBM) in experimental settings. We analyzed MPS1 mRNA-expression in gliomas WHO grade II, III and in clinical subgroups of GBM. Data were obtained by qPCR analysis of tumor and healthy brain specimens and correlated with the patients' clinical data. MPS1 was overexpressed in all gliomas on an mRNA level (ANOVA, p < 0.01) and correlated with tumor aggressiveness. We explain previously published conflicting results on survival: high MPS1 was associated with poorer long term survival when all gliomas were analyzed combined in one group (Cox regression: t < 24 months, p = 0.009, Hazard ratio: 8.0, 95\% CI: 1.7-38.4), with poorer survival solely in low-grade gliomas (LogRank: p = 0.02, Cox regression: p = 0.06, Hazard-Ratio: 8.0, 95\% CI: 0.9-66.7), but not in GBM (LogRank: p > 0.05). This might be due to their lower tumor volume at the therapy start. GBM patients with high MPS1 mRNA-expression developed clinical symptoms at an earlier stage. This, however, did not benefit their overall survival, most likely due to the more aggressive tumor growth. Since MPS1 mRNA-expression in gliomas was enhanced with increasing tumor aggressiveness, patients with the worst outcome might benefit best from a treatment directed against MPS1.}, language = {en} } @article{KumarNaumannAigneretal.2015, author = {Kumar, Praveen and Naumann, Ulrike and Aigner, Ludwig and Wischhusen, Joerg and Beier, Christoph P and Beier, Dagmar}, title = {Impaired TGF-β induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53}, series = {American Journal of Cancer Research}, volume = {5}, journal = {American Journal of Cancer Research}, number = {11}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144262}, pages = {3436-3445}, year = {2015}, abstract = {Gliomas have been classified according to their histological properties. However, their respective cells of origin are still unknown. Neural progenitor cells (NPC) from the subventricular zone (SVZ) can initiate tumors in murine models of glioma and are likely cells of origin in the human disease. In both, p53 signaling is often functionally impaired which may contribute to tumor formation. Also, TGF-beta, which under physiological conditions exerts a strong control on the proliferation of NPCs in the SVZ, is a potent mitogen on glioma cells. Here, we approach on the crosstalk between p53 and TGF-beta by loss of function experiments using NPCs derived from p53 mutant mice, as well as pharmacological inhibition of TGF-beta signaling using TGF-beta receptor inhibitors. NPC derived from p53 mutant mice showed increased clonogenicity and more rapid proliferation than their wildtype counterparts. Further, NPC derived from p53\(^{mut/mut}\) mice were insensitive to TGF-beta induced growth arrest. Still, the canonical TGF-beta signaling pathway remained functional in the absence of p53 signaling and expression of key proteins as well as phosphorylation and nuclear translocation of SMAD2 were unaltered. TGF-beta-induced p21 expression could, in contrast, only be detected in p53\(^{wt/wt}\) but not in p53\(^{mut/mut}\) NPC. Conversely, inhibition of TGF-beta signaling using SB431542 increased proliferation of p53\(^{wt/wt}\) but not of p53\(^{mut/mut}\) NPC. In conclusion, our data suggest that the TGF-beta induced growth arrest in NPC depends on functional p53. Mutational inactivation of p53 hence contributes to increased proliferation of NPC and likely to the formation of hyperplasia of the SVZ observed in p53 deficient mice in vivo.}, language = {en} } @article{LoehrHaertigSchulzeetal.2022, author = {L{\"o}hr, Mario and H{\"a}rtig, Wolfgang and Schulze, Almut and Kroiß, Matthias and Sbiera, Silviu and Lapa, Constantin and Mages, Bianca and Strobel, Sabrina and Hundt, Jennifer Elisabeth and Bohnert, Simone and Kircher, Stefan and Janaki-Raman, Sudha and Monoranu, Camelia-Maria}, title = {SOAT1: A suitable target for therapy in high-grade astrocytic glioma?}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284178}, year = {2022}, abstract = {Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.}, language = {en} }