@article{HerrmannDiederichsMelniketal.2021, author = {Herrmann, Marietta and Diederichs, Solvig and Melnik, Svitlana and Riegger, Jana and Trivanović, Drenka and Li, Shushan and Jenei-Lanzl, Zsuzsa and Brenner, Rolf E. and Huber-Lang, Markus and Zaucke, Frank and Schildberg, Frank A. and Gr{\"a}ssel, Susanne}, title = {Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.624096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222882}, year = {2021}, abstract = {The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.}, language = {en} } @article{TelesYanoVillarinhoetal.2021, author = {Teles, Ramon Handerson Gomes and Yano, Rafael Sussumu and Villarinho, Nicolas Jones and Yamagata, Ana Sayuri and Jaeger, Ruy Gastaldoni and Meybohm, Patrick and Burek, Malgorzata and Freitas, Vanessa Morais}, title = {Advances in breast cancer management and extracellular vesicle research, a bibliometric analysis}, series = {Current Oncology}, volume = {28}, journal = {Current Oncology}, number = {6}, issn = {1718-7729}, doi = {10.3390/curroncol28060382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284321}, pages = {4504 -- 4520}, year = {2021}, abstract = {Extracellular vesicles transport variable content and have crucial functions in cell-cell communication. The role of extracellular vesicles in cancer is a current hot topic, and no bibliometric study has ever analyzed research production regarding their role in breast cancer and indicated the trends in the field. In this way, we aimed to investigate the trends in breast cancer management involved with extracellular vesicle research. Articles were retrieved from Scopus, including all the documents published concerning breast cancer and extracellular vesicles. We analyzed authors, journals, citations, affiliations, and keywords, besides other bibliometric analyses, using R Studio version 3.6.2. and VOSviewer version 1.6.0. A total of 1151 articles were retrieved, and as the main result, our analysis revealed trending topics on biomarkers of liquid biopsy, drug delivery, chemotherapy, autophagy, and microRNA. Additionally, research related to extracellular vesicles in breast cancer has been focused on diagnosis, treatment, and mechanisms of action of breast tumor-derived vesicles. Future studies are expected to explore the role of extracellular vesicles on autophagy and microRNA, besides investigating the application of extracellular vesicles from liquid biopsies for biomarkers and drug delivery, enabling the development and validation of therapeutic strategies for specific cancers.}, language = {en} }