@article{CarvalhoPereiraFernandesAraujoetal.2020, author = {Carvalho-Pereira, Joana and Fernandes, Filipa and Ara{\´u}jo, Ricardo and Springer, Jan and Loeffler, Juergen and Buitrago, Mar{\´i}a Jos{\´e} and Pais, C{\´e}lia and Sampaio, Paula}, title = {Multiplex PCR based strategy for detection of fungal pathogen DNA in patients with suspected invasive fungal infections}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof6040308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219392}, year = {2020}, abstract = {A new and easy polymerase chain reaction (PCR) multiplex strategy, for the identification of the most common fungal species involved in invasive fungal infections (IFI) was developed in this work. Two panels with species-specific markers were designed, the Candida Panel for the identification of Candida species, and the Filamentous Fungi Panel for the identification of Aspergillus species and Rhizopusarrhizus. The method allowed the correct identification of all targeted pathogens using extracted DNA or by colony PCR, showed no cross-reactivity with nontargeted species and allowed identification of different species in mixed infections. Sensitivity reached 10 to 1 pg of DNA and was suitable for clinical samples from sterile sites, with a sensitivity of 89\% and specificity of 100\%. Overall, the study showed that the new method is suitable for the identification of the ten most important fungal species involved in IFI, not only from positive blood cultures but also from clinical samples from sterile sites. The method provides a unique characteristic, of seeing the peak in the specific region of the panel with the correct fluorescence dye, that aids the ruling out of unspecific amplifications. Furthermore, the panels can be further customized, selecting markers for different species and/or resistance genes.}, language = {en} } @article{PaholcsekFidlerKonyaetal.2015, author = {Paholcsek, Melinda and Fidler, Gabor and Konya, Jozsef and Rejto, Laszlo and Mehes, Gabor and Bukta, Evelin and Loeffler, Juergen and Biro, Sandor}, title = {Combining standard clinical methods with PCR showed improved diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies and prolonged neutropenia}, series = {BMC Infectious Diseases}, volume = {15}, journal = {BMC Infectious Diseases}, number = {251}, doi = {10.1186/s12879-015-0995-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151607}, year = {2015}, abstract = {Background: We assessed the diagnostic value of standard clinical methods and combined biomarker testing (galactomannan assay and polymerase chain reaction screening) in a prospective case-control study to detect invasive pulmonary aspergillosis in patients with hematological malignancies and prolonged neutropenia. Methods: In this observational study 162 biomarker analyses were performed on samples from 27 febrile neutropenic episodes. Sera were successively screened for galactomannan antigen and for Aspergillus fumigatus specific nucleic acid targets. Furthermore thoracic computed tomography scanning was performed along with bronchoscopy with lavage when clinically indicated. Patients were retrospectively stratified to define a case-group with "proven" or "probable" invasive pulmonary aspergillosis (25.93 \%) and a control-group of patients with no evidence for of invasive pulmonary aspergillosis (74.07 \%). In 44.44 \% of episodes fever ceased in response to antibiotic treatment (group II). Empirical antifungal therapy was administered for episodes with persistent or relapsing fever (group I). 48.15 \% of patients died during the study period. Postmortem histology was pursued in 53.85 \% of fatalities. Results: Concordant negative galactomannan and computed tomography supported by a polymerase chain reaction assay were shown to have the highest discriminatory power to exclude invasive pulmonary aspergillosis. Bronchoalveolar lavage was performed in 6 cases of invasive pulmonary aspergillosis and in 15 controls. Although bronchoalveolar lavage proved negative in 93 \% of controls it did not detect IPA in 86 \% of the cases. Remarkably post mortem histology convincingly supported the presence of Aspergillus hyphae in lung tissue from a single case which had consecutive positive polymerase chain reaction assay results but was misdiagnosed by both computed tomography and consistently negative galactomannan assay results. For the galactomannan enzyme-immunoassay the diagnostic odds ratio was 15.33 and for the polymerase chain reaction assay it was 28.67. According to Cohen's kappa our in-house polymerase chain reaction method showed a fair agreement with the galactomannan immunoassay. Combined analysis of the results from the Aspergillus galactomannan enzyme immunoassay together with those generated by our polymerase chain reaction assay led to no misdiagnoses in the control group. Conclusion: The data from this pilot-study demonstrate that the consideration of standard clinical methods combined with biomarker testing improves the capacity to make early and more accurate diagnostic decisions.}, language = {en} }