@article{ElMoualiGerovacMineikaitėetal.2021, author = {El Mouali, Youssef and Gerovac, Milan and Mineikaitė, Raminta and Vogel, J{\"o}rg}, title = {In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkab281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261072}, pages = {5319-5335}, year = {2021}, abstract = {FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.}, language = {en} } @article{GehrmannHertleinHopkeetal.2021, author = {Gehrmann, Robin and Hertlein, Tobias and Hopke, Elisa and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {1}, issn = {1420-3049}, doi = {10.3390/molecules27010061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252371}, year = {2021}, abstract = {Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.}, language = {en} } @article{GrafLiHerrmannetal.2014, author = {Graf, Nicolas and Li, Zhoulei and Herrmann, Ken and Weh, Daniel and Aichler, Michaela and Slawska, Jolanta and Walch, Axel and Peschel, Christian and Schwaiger, Markus and Buck, Andreas K. and Dechow, Tobias and Keller, Ulrich}, title = {Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma}, series = {Oncotargets and Therapy}, volume = {7}, journal = {Oncotargets and Therapy}, doi = {10.2147/OTT.S59314}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117915}, pages = {789-798}, year = {2014}, abstract = {Background: Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[F-18] fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[F-18] fluorothymidine (FLT). Methods: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Conclusion: Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy.}, language = {en} } @article{HartliebKempfPartillaetal.2013, author = {Hartlieb, Eva and Kempf, Bettina and Partilla, Miriam and Vigh, Bal{\´a}zs and Spindler, Volker and Waschke, Jens}, title = {Desmoglein 2 Is Less Important than Desmoglein 3 for Keratinocyte Cohesion}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053739}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131192}, pages = {e53739}, year = {2013}, abstract = {Desmosomes provide intercellular adhesive strength required for integrity of epithelial and some non-epithelial tissues. Within the epidermis, the cadherin-type adhesion molecules desmoglein (Dsg) 1-4 and desmocollin (Dsc) 1-3 build the adhesive core of desmosomes. In keratinocytes, several isoforms of these proteins are co-expressed. However, the contribution of specific isoforms to overall cell cohesion is unclear. Therefore, in this study we investigated the roles of Dsg2 and Dsg3, the latter of which is known to be essential for keratinocyte adhesion based on its autoantibody-induced loss of function in the autoimmune blistering skin disease pemphigus vulgaris (PV). The pathogenic PV antibody AK23, targeting the Dsg3 adhesive domain, led to profound loss of cell cohesion in human keratinocytes as revealed by the dispase-based dissociation assays. In contrast, an antibody against Dsg2 had no effect on cell cohesion although the Dsg2 antibody was demonstrated to interfere with Dsg2 transinteraction by single molecule atomic force microscopy and was effective to reduce cell cohesion in intestinal epithelial Caco-2 cells which express Dsg2 as the only Dsg isoform. To substantiate these findings, siRNA-mediated silencing of Dsg2 or Dsg3 was performed in keratinocytes. In contrast to Dsg3-depleted cells, Dsg2 knockdown reduced cell cohesion only under conditions of increased shear. These experiments indicate that specific desmosomal cadherins contribute differently to keratinocyte cohesion and that Dsg2 compared to Dsg3 is less important in this context.}, language = {en} } @article{HausmannBrandtKoecheletal.2015, author = {Hausmann, Stefan and Brandt, Evelyn and K{\"o}chel, Carolin and Einsele, Hermann and Bargou, Ralf C. and Seggewiss-Bernhardt, Ruth and St{\"u}hmer, Thorsten}, title = {Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0122689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148708}, pages = {e0122689}, year = {2015}, abstract = {Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells-either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM. 1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110\(\alpha\), or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma.}, language = {en} } @article{ReinholdBattiBilbaoetal.2015, author = {Reinhold, A. K. and Batti, L. and Bilbao, D. and Buness, A. and Rittner, H. L. and Heppenstall, P. A.}, title = {Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0123342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143290}, pages = {e0123342}, year = {2015}, abstract = {Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropinreleasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG.}, language = {en} } @article{SagivMichaeliAssietal.2015, author = {Sagiv, Jitka Y. and Michaeli, Janna and Assi, Simaan and Mishalian, Inbal and Kisos, Hen and Levy, Liran and Damti, Pazzit and Lumbroso, Delphine and Polyansky, Lola and Sionov, Ronit V. and Ariel, Amiram and Hovav, Avi-Hai and Henke, Erik and Fridlender, Zvi G. and Granot, Zvi}, title = {Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer}, series = {Cell Reports}, volume = {10}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.12.039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144102}, pages = {562-573}, year = {2015}, abstract = {Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro-and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-beta-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.}, language = {en} } @phdthesis{Schmidt2015, author = {Schmidt, Thomas Christian}, title = {Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden f{\"u}r die strukturbasierte Entwicklung neuer Wirkstoffe pr{\"a}sentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor f{\"u}r die Reaktivit{\"a}t des Inhibitors gegen{\"u}ber der katalytisch aktiven Aminos{\"a}ure und damit f{\"u}r die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch f{\"u}r die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinit{\"a}t zum Zielenzyme zu verbessern ohne dass dieser seine F{\"a}higkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterst{\"u}tzt, das diese optimal dazu geeignet sind, Bindungsaffinit{\"a}ten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu {\"u}berpr{\"u}fen, ob die ver{\"a}nderten Molek{\"u}le noch gen{\"u}gen Reaktivit{\"a}t gegen{\"u}ber dem Zielprotein aufweisen. Molek{\"u}ldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die ver{\"a}nderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr m{\"o}glich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben {\"A}nderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern ver{\"a}ndert. Die Bindungsaffinit{\"a}ten wurde wieder mittels Docking {\"u}berpr{\"u}ft. F{\"u}r die besten Bindungsposen wurden wieder Simulationen zur Molek{\"u}ldynamik durchgef{\"u}hrt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme m{\"o}glich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Ber{\"u}cksichtigung verschiedener Protonierungszust{\"a}nde des Inhibitors und des Proteins konnten Reaktionspfade und zugeh{\"o}rige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Molek{\"u}le sowohl eine stark verbesserte Bindungsaffinit{\"a}t wie auch die M{\"o}glichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinfl{\"u}sse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moek{\"u}l, f{\"u}r das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verf{\"u}gbar sind. Ein Referendatensatz f{\"u}r diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach m{\"o}glichen Minimumsstrukturen abgesucht wurde, welche sp{\"a}ter mit den Geometrien des Molek{\"u}ls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten {\"u}bernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass f{\"u}r das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszust{\"a}nde f{\"u}r die katalytisch aktiven Aminos{\"a}uren m{\"o}glich sind. F{\"u}r die Analyse wurden daher alle m{\"o}glichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Molek{\"u}ls im Vakuum sowie der Geometrie in w{\"a}ssriger L{\"o}sung angestellt. F{\"u}r die Geometrie des Molek{\"u}ls an sich ergab sich eine gute {\"U}bereinstimmung f{\"u}r alle Modellsysteme, f{\"u}r die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gr{\"u}nde, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminos{\"a}uren. Als Ursache f{\"u}r diese Abstoßung konnte die Einf{\"u}hrung der Methylaminfunktion ausgemacht werden. Vermutlicherweise f{\"u}hrt diese strukturelle {\"A}nderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden.}, subject = {Theoretische Chemie}, language = {en} } @article{SeethalerHertleinHopkeetal.2022, author = {Seethaler, Marius and Hertlein, Tobias and Hopke, Elisa and K{\"o}hling, Paul and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel effective fluorinated benzothiophene-indole hybrid antibacterials against S. aureus and MRSA strains}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {9}, issn = {1424-8247}, doi = {10.3390/ph15091138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288253}, year = {2022}, abstract = {Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs' complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds.}, language = {en} } @article{SeethalerHertleinWeckleinetal.2019, author = {Seethaler, Marius and Hertlein, Tobias and Wecklein, Bj{\"o}rn and Ymeraj, Alba and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species}, series = {Antibiotics}, volume = {8}, journal = {Antibiotics}, number = {4}, issn = {2079-6382}, doi = {10.3390/antibiotics8040210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193130}, year = {2019}, abstract = {Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.}, language = {en} } @article{TilstamGijbelsHabbeddineetal.2014, author = {Tilstam, Pathricia V. and Gijbels, Marion J. and Habbeddine, Mohamed and Cudejko, Celine and Asare, Yaw and Theelen, Wendy and Zhou, Baixue and D{\"o}ring, Yvonne and Drechsler, Maik and Pawig, Lukas and Simsekyilmaz, Sakine and Koenen, Rory R. and de Winther, Menno P. J. and Lawrence, Toby and Bernhagen, J{\"u}rgen and Zernecke, Alma and Weber, Christian and Noels, Heidi}, title = {Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {2}, doi = {10.1371/journal.pone.0087452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117450}, pages = {e87452}, year = {2014}, abstract = {Background: The Ikkα kinase, a subunit of the NF-kappa B-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikk alpha mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA) Apoe(-/-)) or with Ikkα(+/+) Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA) Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα AA mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.}, language = {en} } @article{TolayBuchberger2021, author = {Tolay, Nazife and Buchberger, Alexander}, title = {Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system}, series = {Life Science Alliance}, volume = {4}, journal = {Life Science Alliance}, number = {5}, doi = {10.26508/lsa.202000927}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259810}, pages = {e202000927}, year = {2021}, abstract = {Stress granules (SGs) are cytoplasmic condensates containing untranslated mRNP complexes. They are induced by various proteotoxic conditions such as heat, oxidative, and osmotic stress. SGs are believed to protect mRNPs from degradation and to enable cells to rapidly resume translation when stress conditions subside. SG dynamics are controlled by various posttranslationalmodifications, but the role of the ubiquitin system has remained controversial. Here, we present a comparative analysis addressing the involvement of the ubiquitin system in SG clearance. Using high-resolution immuno-fluorescence microscopy, we found that ubiquitin associated to varying extent with SGs induced by heat, arsenite, H2O2, sorbitol, or combined puromycin and Hsp70 inhibitor treatment. SG-associated ubiquitin species included K48- and K63-linked conjugates, whereas free ubiquitin was not significantly enriched. Inhibition of the ubiquitin activating enzyme, deubiquitylating enzymes, the 26S proteasome and p97/VCP impaired the clearance of arsenite- and heat-induced SGs, whereas SGs induced by other stress conditions were little affected. Our data underline the differential involvement of the ubiquitin system in SG clearance, a process important to prevent the formation of disease-linked aberrant SGs.}, language = {en} } @phdthesis{Wagener2005, author = {Wagener, Annika}, title = {The NoGo-anteriorization and its relation to a central inhibitory mechanism}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14799}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The maximum of the brain electrical field after NoGo stimuli is located more anteriorly than that after stimuli that tells participants to respond. The difference in topography was called NoGo-Anteriorization (NGA). Recently, there was a debate, whether the NGA is related to a central inhibitory process or not. However, experiments showed that the NGA is not the result of motor potentials during Go trials, the NGA does not represent higher response conflict and or higher mental effort in NoGo trials, and the NGA is not based on less cognitive response selection in NoGo trials. Therefore, the experiments support the assumption that the NGA is connected to an inhibitory mechanism in NoGo conditions.}, subject = {Handlung}, language = {en} }