@article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @article{BeyhoffLohrThieleetal.2020, author = {Beyhoff, Niklas and Lohr, David and Thiele, Arne and Foryst-Ludwig, Anna and Klopfleisch, Robert and Schreiber, Laura M. and Kintscher, Ulrich}, title = {Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study}, series = {Frontiers in Cardiovascular Medicine}, volume = {7}, journal = {Frontiers in Cardiovascular Medicine}, doi = {10.3389/fcvm.2020.580296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217959}, year = {2020}, abstract = {Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.}, language = {en} } @article{BiedererBeerHirschetal.2012, author = {Biederer, J. and Beer, M. and Hirsch, W. and Wild, J. and Fabel, M. and Puderbach, M. and Van Beek, E. J. R.}, title = {MRI of the lung (2/3). Why … when … how?}, series = {Insights into Imaging}, volume = {3}, journal = {Insights into Imaging}, number = {4}, doi = {10.1007/s13244-011-0146-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124268}, pages = {355-371}, year = {2012}, abstract = {Background Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs. Methods This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI. Results Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future. Conclusion This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicated}, language = {en} } @article{BiedererMirsadraeeBeeretal.2012, author = {Biederer, J{\"u}rgen and Mirsadraee, S. and Beer, M. and Molinari, F. and Hintze, C. and Bauman, G. and Both, M. and Van Beek, E. J. R. and Wild, J. and Puderbach, M.}, title = {MRI of the lung (3/3)—current applications and future perspectives}, series = {Insights into Imaging}, volume = {3}, journal = {Insights into Imaging}, number = {4}, doi = {10.1007/s13244-011-0142-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124348}, pages = {373-386}, year = {2012}, abstract = {Background MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. Methods Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. Results In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. Conclusion New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations.}, language = {en} } @article{FranichMederBehr2020, author = {Franich, Robert A. and Meder, Roger and Behr, Volker C.}, title = {Dewatering Green Sapwood Using Carbon Dioxide Undergoing Cyclical Phase Change between Supercritical Fluid and Gas}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {22}, issn = {1420-3049}, doi = {10.3390/molecules25225367}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219327}, year = {2020}, abstract = {Conventional kiln drying of wood operates by the evaporation of water at elevated temperature. In the initial stage of drying, mobile water in the wood cell lumen evaporates. More slowly, water bound in the wood cell walls evaporates, requiring the breaking of hydrogen bonds between water molecules and cellulose and hemicellulose polymers in the cell wall. An alternative for wood kiln drying is a patented process for green wood dewatering through the molecular interaction of supercritical carbon dioxide with water of wood cell sap. When the system pressure is reduced to below the critical point, phase change from supercritical fluid to gas occurs with a consequent large change in CO2 volume. This results in the efficient, rapid, mechanical expulsion of liquid sap from wood. The end-point of this cyclical phase-change process is wood dewatered to the cell wall fibre saturation point. This paper describes dewatering over a range of green wood specimen sizes, from laboratory physical chemistry studies to pilot-plant trials. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were applied to study the fundamental mechanisms of the process, which were contrasted with similar studies of conventional thermal wood drying. In conclusion, opportunities and impediments towards the commercialisation of the green wood dewatering process are discussed.}, language = {en} } @article{GuggenbergerVogtSongetal.2023, author = {Guggenberger, Konstanze V. and Vogt, Marius L. and Song, Jae W. and Weng, Andreas M. and Fr{\"o}hlich, Matthias and Schmalzing, Marc and Venhoff, Nils and Hillenkamp, Jost and Pham, Mirko and Meckel, Stephan and Bley, Thorsten A.}, title = {Intraorbital findings in giant cell arteritis on black blood MRI}, series = {European Radiology}, volume = {33}, journal = {European Radiology}, number = {4}, doi = {10.1007/s00330-022-09256-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324978}, pages = {2529-2535}, year = {2023}, abstract = {Objective Blindness is a feared complication of giant cell arteritis (GCA). However, the spectrum of pathologic orbital imaging findings on magnetic resonance imaging (MRI) in GCA is not well understood. In this study, we assess inflammatory changes of intraorbital structures on black blood MRI (BB-MRI) in patients with GCA compared to age-matched controls. Methods In this multicenter case-control study, 106 subjects underwent BB-MRI. Fifty-six patients with clinically or histologically diagnosed GCA and 50 age-matched controls without clinical or laboratory evidence of vasculitis were included. All individuals were imaged on a 3-T MR scanner with a post-contrast compressed-sensing (CS) T1-weighted sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) BB-MRI sequence. Imaging results were correlated with available clinical symptoms. Results Eighteen of 56 GCA patients (32\%) showed inflammatory changes of at least one of the intraorbital structures. The most common finding was enhancement of at least one of the optic nerve sheaths (N = 13, 72\%). Vessel wall enhancement of the ophthalmic artery was unilateral in 8 and bilateral in 3 patients. Enhancement of the optic nerve was observed in one patient. There was no significant correlation between imaging features of inflammation and clinically reported orbital symptoms (p = 0.10). None of the age-matched control patients showed any inflammatory changes of intraorbital structures. Conclusions BB-MRI revealed inflammatory findings in the orbits in up to 32\% of patients with GCA. Optic nerve sheath enhancement was the most common intraorbital inflammatory change on BB-MRI. MRI findings were independent of clinically reported orbital symptoms. Key Points • Up to 32\% of GCA patients shows signs of inflammation of intraorbital structures on BB-MRI. • Enhancement of the optic nerve sheath is the most common intraorbital finding in GCA patients on BB-MRI. • Features of inflammation of intraorbital structures are independent of clinically reported symptoms.}, language = {en} } @article{GuggenbergerTorreLudwigetal.2022, author = {Guggenberger, Konstanze Viktoria and Torre, Giulia Dalla and Ludwig, Ute and Vogel, Patrick and Weng, Andreas Max and Vogt, Marius Lothar and Fr{\"o}hlich, Matthias and Schmalzing, Marc and Raithel, Esther and Forman, Christoph and Urbach, Horst and Meckel, Stephan and Bley, Thorsten Alexander}, title = {Vasa vasorum of proximal cerebral arteries after dural crossing - potential imaging confounder in diagnosing intracranial vasculitis in elderly subjects on black-blood MRI}, series = {European Radiology}, volume = {32}, journal = {European Radiology}, number = {2}, issn = {1432-1084}, doi = {10.1007/s00330-021-08181-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266524}, pages = {1276-1284}, year = {2022}, abstract = {Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30\%) patients, and of the proximal intradural VA in 39 (91\%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36\%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 \%), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis.}, language = {en} } @article{HaeuslerHermKunzeetal.2012, author = {Haeusler, Karl Georg and Herm, Juliane and Kunze, Claudia and Kr{\"u}ll, Matthias and Brechtel, Lars and Lock, J{\"u}rgen and Hohenhaus, Marc and Heuschmann, Peter U. and Fiebach, Jochen B. and Haverkamp, Wilhelm and Endres, Matthias and Jungehulsing, Gerhard Jan}, title = {Rate of cardiac arrhythmias and silent brain lesions in experienced marathon runners: rationale, design and baseline data of the Berlin Beat of Running study}, series = {BMC Cardiovascular Disorders}, volume = {12}, journal = {BMC Cardiovascular Disorders}, number = {69}, doi = {10.1186/1471-2261-12-69}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133677}, year = {2012}, abstract = {Background: Regular exercise is beneficial for cardiovascular health but a recent meta-analysis indicated a relationship between extensive endurance sport and a higher risk of atrial fibrillation, an independent risk factor for stroke. However, data on the frequency of cardiac arrhythmias or (clinically silent) brain lesions during and after marathon running are missing. Methods/Design: In the prospective observational "Berlin Beat of Running" study experienced endurance athletes underwent clinical examination (CE), 3 Tesla brain magnetic resonance imaging (MRI), carotid ultrasound imaging (CUI) and serial blood sampling (BS) within 2-3 days prior (CE, MRI, CUI, BS), directly after (CE, BS) and within 2 days after (CE, MRI, BS) the 38\(^{th}\) BMW BERLIN-MARATHON 2011. All participants wore a portable electrocardiogram (ECG)-recorder throughout the 4 to 5 days baseline study period. Participants with pathological MRI findings after the marathon, troponin elevations or detected cardiac arrhythmias will be asked to undergo cardiac MRI to rule out structural abnormalities. A follow-up is scheduled after one year. Results: Here we report the baseline data of the enrolled 110 athletes aged 36-61 years. Their mean age was 48.8 \(\pm\) 6.0 years, 24.5\% were female, 8.2\% had hypertension and 2.7\% had hyperlipidaemia. Participants have attended a mean of 7.5 \(\pm\) 6.6 marathon races within the last 5 years and a mean of 16 \(\pm\) 36 marathon races in total. Their weekly running distance prior to the 38\(^{th}\) BMW BERLIN-MARATHON was 65 \(\pm\) 17 km. Finally, 108 (98.2\%) Berlin Beat-Study participants successfully completed the 38\(^{th}\) BMW BERLIN-MARATHON 2011. Discussion: Findings from the "Berlin Beats of Running" study will help to balance the benefits and risks of extensive endurance sport. ECG-recording during the marathon might contribute to identify athletes at risk for cardiovascular events. MRI results will give new insights into the link between physical stress and brain damage.}, language = {en} } @article{HermSchurigMartineketal.2019, author = {Herm, Juliane and Schurig, Johannes and Martinek, Martin R. and H{\"o}ltgen, Reinhard and Schirdewan, Alexander and Kirchhof, Paulus and Wieczorek, Marcus and P{\"u}rerfellner, Helmut and Heuschmann, Peter U. and Fiebach, Jochen B. and Haeusler, Karl Georg}, title = {MRI-detected brain lesions in AF patients without further stroke risk factors undergoing ablation - a retrospective analysis of prospective studies}, series = {BMC Cardiovascular Disorders}, volume = {19}, journal = {BMC Cardiovascular Disorders}, doi = {10.1186/s12872-019-1035-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201226}, pages = {58}, year = {2019}, abstract = {Background Atrial fibrillation (AF) without other stroke risk factors is assumed to have a low annual stroke risk comparable to patients without AF. Therefore, current clinical guidelines do not recommend oral anticoagulation for stroke prevention of AF in patients without stroke risk factors. We analyzed brain magnetic resonance imaging (MRI) imaging to estimate the rate of clinically inapparent ("silent") ischemic brain lesions in these patients. Methods We pooled individual patient-level data from three prospective studies comprising stroke-free patients with symptomatic AF. All study patients underwent brain MRI within 24-48 h before planned left atrial catheter ablation. MRIs were analyzed by a neuroradiologist blinded to clinical data. Results In total, 175 patients (median age 60 (IQR 54-67) years, 32\% female, median CHA\(_2\)DS\(_2\)-VASc = 1 (IQR 0-2), 33\% persistent AF) were included. In AF patients without or with at least one stroke risk factor, at least one silent ischemic brain lesion was observed in 4 (8\%) out of 48 and 10 (8\%) out of 127 patients, respectively (p > 0.99). Presence of silent ischemic brain lesions was related to age (p = 0.03) but not to AF pattern (p = 0.77). At least one cerebral microbleed was detected in 5 (13\%) out of 30 AF patients without stroke risk factors and 25 (25\%) out of 108 AF patients with stroke risk factors (p = 0.2). Presence of cerebral microbleeds was related to male sex (p = 0.04) or peripheral artery occlusive disease (p = 0.03). Conclusion In patients with symptomatic AF scheduled for ablation, brain MRI detected silent ischemic brain lesions in approximately one in 12 patients, and microbleeds in one in 5 patients. The prevalence of silent ischemic brain lesions did not differ in AF patients with or without further stroke risk factors.}, language = {en} } @article{HeroldHerzWinteretal.2017, author = {Herold, Volker and Herz, Stefan and Winter, Patrick and Gutjahr, Fabian Tobias and Andelovic, Kristina and Bauer, Wolfgang Rudolf and Jakob, Peter Michael}, title = {Assessment of local pulse wave velocity distribution in mice using k-t BLAST PC-CMR with semi-automatic area segmentation.}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {19}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {77}, doi = {10.1186/s12968-017-0382-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157696}, year = {2017}, abstract = {Background: Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. Methods: In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE\(^{(-/-)}\)-mice) at 12 adjacent locations along the abdominal aorta. Results: Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE\(^{(-/-)}\)-group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE \(^{(-/-)}\)-animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. Conclusion: In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE\(^{(-/-)}\)-mice as a relevant model of atherosclerosis.}, language = {en} } @article{HertleinSturmJakobetal.2013, author = {Hertlein, Tobias and Sturm, Volker and Jakob, Peter and Ohlsen, Knut}, title = {\(^{19}\)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0064440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130113}, pages = {e64440}, year = {2013}, abstract = {Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of \(^{19}\)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9\% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of \(^{19}\)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the \(^{19}\)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions \(^{19}\)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection.}, language = {en} } @article{HerzStefanescuLohretal.2022, author = {Herz, Stefan and Stefanescu, Maria R. and Lohr, David and Vogel, Patrick and Kosmala, Aleksander and Terekhov, Maxim and Weng, Andreas M. and Grunz, Jan-Peter and Bley, Thorsten A. and Schreiber, Laura M.}, title = {Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {6}, doi = {10.1371/journal.pone.0270689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300129}, year = {2022}, abstract = {Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0\%, 20\%, 40\%, 60\%, 80\%, and 100\%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60\% and 80\%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14\%, outside the phantoms 32\%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.}, language = {en} } @article{HuflageKarstenKunzetal.2021, author = {Huflage, Henner and Karsten, Sebastian and Kunz, Andreas Steven and Conrads, Nora and Jakubietz, Rafael Gregor and Jakubietz, Michael Georg and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Improved diagnostic accuracy for ulnar-sided TFCC lesions with radial reformation of 3D sequences in wrist MR arthrography}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, number = {12}, issn = {1432-1084}, doi = {10.1007/s00330-021-08024-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266512}, pages = {9399-9407}, year = {2021}, abstract = {Objectives Triangular fibrocartilage complex (TFCC) injuries frequently cause ulnar-sided wrist pain and can induce distal radioulnar joint instability. With its complex three-dimensional structure, diagnosis of TFCC lesions remains a challenging task even in MR arthrograms. The aim of this study was to assess the added diagnostic value of radial reformatting of isotropic 3D MRI datasets compared to standard planes after direct arthrography of the wrist. Methods Ninety-three patients underwent wrist MRI after fluoroscopy-guided multi-compartment arthrography. Two radiologists collectively analyzed two datasets of each MR arthrogram for TFCC injuries, with one set containing standard reconstructions of a 3D thin-slice sequence in axial, coronal and sagittal orientation, while the other set comprised an additional radial plane view with the rotating center positioned at the ulnar styloid. Surgical reports (whenever available) or radiological reports combined with clinical follow-up served as a standard of reference. In addition, diagnostic confidence and assessability of the central disc and ulnar-sided insertions were subjectively evaluated. Results Injuries of the articular disc, styloid and foveal ulnar attachment were present in 20 (23.7\%), 10 (10.8\%) and 9 (9.7\%) patients. Additional radial planes increased diagnostic accuracy for lesions of the styloid (0.83 vs. 0.90; p = 0.016) and foveal (0.86 vs. 0.94; p = 0.039) insertion, whereas no improvement was identified for alterations of the central cartilage disc. Readers' confidence (p < 0.001) and assessability of the ulnar-sided insertions (p < 0.001) were superior with ancillary radial reformatting. Conclusions Access to the radial plane view of isotropic 3D sequences in MR arthrography improves diagnostic accuracy and confidence for ulnar-sided TFCC lesions.}, language = {en} } @article{KazuhinoWernerToriumietal.2018, author = {Kazuhino, Koshino and Werner, Rudolf A. and Toriumi, Fuijo and Javadi, Mehrbod S. and Pomper, Martin G. and Solnes, Lilja B. and Verde, Franco and Higuchi, Takahiro and Rowe, Steven P.}, title = {Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images}, series = {Tomography}, volume = {4}, journal = {Tomography}, number = {4}, doi = {10.18383/j.tom.2018.00042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172185}, pages = {159-163}, year = {2018}, abstract = {Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40\%-60\%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45\% and 71\% as real magnetic resonance imaging images (NNRs, 24\%, 40\%, and 44\%). In contradistinction, 44\% and 70\% of the real images were rated as generated images by NRs (NNRs, 10\%, 17\%, and 27\%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications.}, subject = {Magnetresonanztomografie}, language = {en} } @phdthesis{Kleineisel2024, author = {Kleineisel, Jonas}, title = {Variational networks in magnetic resonance imaging - Application to spiral cardiac MRI and investigations on image quality}, doi = {10.25972/OPUS-34737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Acceleration is a central aim of clinical and technical research in magnetic resonance imaging (MRI) today, with the potential to increase robustness, accessibility and patient comfort, reduce cost, and enable entirely new kinds of examinations. A key component in this endeavor is image reconstruction, as most modern approaches build on advanced signal and image processing. Here, deep learning (DL)-based methods have recently shown considerable potential, with numerous publications demonstrating benefits for MRI reconstruction. However, these methods often come at the cost of an increased risk for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based MRI reconstruction, while ensuring high quality and fidelity with measured data. A network architecture specifically suited for this purpose is the variational network (VN). To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part presents an application of VNs, which were specifically adapted to the reconstruction of accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a U-Net and a compressed sensing (CS) model using qualitative and quantitative measures. While the U-Net performed poorly, the VN as well as the CS reconstruction showed good output quality. In functional cardiac imaging, the proposed real-time method with VN reconstruction substantially accelerates examinations over the gold-standard, from over 10 to just 1 minute. Clinical parameters agreed on average. Generally in MRI reconstruction, the assessment of image quality is complex, in particular for modern non-linear methods. Therefore, advanced techniques for precise evaluation of quality were subsequently demonstrated. With two distinct methods, resolution and amplification or suppression of noise are quantified locally in each pixel of a reconstruction. Using these, local maps of resolution and noise in parallel imaging (GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but amplifies noise noticeably. The other methods adapt their behavior to image structure, where different levels of local blurring were observed at edges compared to homogeneous areas, and noise was suppressed except at edges. Overall, VNs were found to combine a number of advantageous properties, including a good trade-off between resolution and noise, fast reconstruction times, and high overall image quality and fidelity of the produced output. Therefore, this network architecture seems highly promising for MRI reconstruction.}, subject = {Kernspintomografie}, language = {en} } @article{KurzKampfBuschleetal.2016, author = {Kurz, Felix T. and Kampf, Thomas and Buschle, Lukas R. and Schlemmer, Heinz-Peter and Bendszus, Martin and Heiland, Sabine and Ziener, Christian H.}, title = {Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic perturbers}, series = {Frontiers in Physics}, volume = {4}, journal = {Frontiers in Physics}, issn = {2296-424X}, doi = {10.3389/fphy.2016.00046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190604}, year = {2016}, abstract = {In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin dephasing in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows deriving analytical expressions of the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.}, language = {en} } @article{LapaLinsenmannLueckerathetal.2015, author = {Lapa, Constantin and Linsenmann, Thomas and L{\"u}ckerath, Katharina and Samnick, Samuel and Herrmann, Ken and Stoffer, Carolin and Ernestus, Ralf-Ingo and Buck, Andreas K. and L{\"o}hr, Mario and Monoranu, Camelia-Maria}, title = {Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0122269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125498}, pages = {e0122269}, year = {2015}, abstract = {Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10\% to >50\% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.}, language = {en} } @article{MartensPanzervandenWijngaardetal.2020, author = {Martens, Johannes and Panzer, Sabine and van den Wijngaard, Jeroen and Siebes, Maria and Schreiber, Laura M.}, title = {Influence of contrast agent dispersion on bolus-based MRI myocardial perfusion measurements: A computational fluid dynamics study}, series = {Magnetic Resonance in Medicine}, volume = {84}, journal = {Magnetic Resonance in Medicine}, number = {1}, doi = {10.1002/mrm.28125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208698}, pages = {467-483}, year = {2020}, abstract = {Purpose: Bolus-based dynamic contrast agent (CA) perfusion measurements of the heart are subject to systematic errors due to CA bolus dispersion in the coronary arteries. To better understand these effects on quantification of myocardial blood flow and myocardial perfusion reserve (MPR), an in-silico model of the coronary arteries down to the pre-arteriolar vessels has been developed. Methods: In this work, a computational fluid dynamics analysis is performed to investigate these errors on the basis of realistic 3D models of the left and right porcine coronary artery trees, including vessels at the pre-arteriolar level. Using advanced boundary conditions, simulations of blood flow and CA transport are conducted at rest and under stress. These are evaluated with regard to dispersion (assessed by the width of CA concentration time curves and associated vascular transport functions) and errors of myocardial blood flow and myocardial perfusion reserve quantification. Results: Contrast agent dispersion increases with traveled distance as well as vessel diameter, and decreases with higher flow velocities. Overall, the average myocardial blood flow errors are -28\% ± 16\% and -8.5\% ± 3.3\% at rest and stress, respectively, and the average myocardial perfusion reserve error is 26\% ± 22\%. The calculated values are different in the left and right coronary tree. Conclusion: Contrast agent dispersion is dependent on a complex interplay of several different factors characterizing the cardiovascular bed, including vessel size and integrated vascular length. Quantification errors evoked by the observed CA dispersion show nonnegligible distortion in dynamic CA bolus-based perfusion measurements. We expect future improvements of quantitative perfusion measurements to make the systematic errors described here more apparent.}, language = {en} } @article{NordbeckBoenhofHilleretal.2013, author = {Nordbeck, Peter and B{\"o}nhof, Leoni and Hiller, Karl-Heinz and Voll, Sabine and Arias-Loza, Paula and Seidlmaier, Lea and Williams, Tatjana and Ye, Yu-Xiang and Gensler, Daniel and Pelzer, Theo and Ertl, Georg and Jakob, Peter M. and Bauer, Wolfgang R. and Ritter, Oliver}, title = {Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0068275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130064}, pages = {e68275}, year = {2013}, abstract = {Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.}, language = {en} } @article{PetritschKoestlerGassenmaieretal.2016, author = {Petritsch, Bernhard and K{\"o}stler, Herbert and Gassenmaier, Tobias and Kunz, Andreas S and Bley, Thorsten A and Horn, Michael}, title = {An investigation into potential gender-specific differences in myocardial triglyceride content assessed by \(^{1}\)H-Magnetic Resonance Spectroscopy at 3Tesla}, series = {Journal of International Medical Research}, volume = {44}, journal = {Journal of International Medical Research}, number = {3}, doi = {10.1177/0300060515603884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168808}, pages = {585-591}, year = {2016}, abstract = {Objective: Over the past decade, myocardial triglyceride content has become an accepted biomarker for chronic metabolic and cardiac disease. The purpose of this study was to use proton (hydrogen 1)-magnetic resonance spectroscopy (\(^{1}\)H-MRS) at 3Tesla (3 T) field strength to assess potential gender-related differences in myocardial triglyceride content in healthy individuals. Methods: Cardiac MR imaging was performed to enable accurate voxel placement and obtain functional and morphological information. Double triggered (i.e., ECG and respiratory motion gating) \(^{1}\)H-MRS was used to quantify myocardial triglyceride levels for each gender. Two-sample t-test and Mann-Whitney U-test were used for statistical analyses. Results: In total, 40 healthy volunteers (22 male, 18 female; aged >18 years and age matched) were included in the study. Median myocardial triglyceride content was 0.28\% (interquartile range [IQR] 0.17-0.42\%) in male and 0.24\% (IQR 0.14-0.45\%) in female participants, and no statistically significant difference was observed between the genders. Furthermore, no gender-specific difference in ejection fraction was observed, although on average, male participants presented with a higher mean ± SD left ventricular mass (136.3 ± 25.2 g) than female participants (103.9 ± 16.1 g). Conclusions: The study showed that \(^{1}\)H-MRS is a capable, noninvasive tool for acquisition of myocardial triglyceride metabolites. Myocardial triglyceride concentration was shown to be unrelated to gender in this group of healthy volunteers.}, language = {en} } @phdthesis{Portmann2023, author = {Portmann, Johannes}, title = {Accelerated inversion recovery MRI of the myocardium using spiral acquisition}, doi = {10.25972/OPUS-30282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302822}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work deals with the acceleration of cardiovascular MRI for the assessment of functional information in steady-state contrast and for viability assessment during the inversion recovery of the magnetization. Two approaches are introduced and discussed in detail. MOCO-MAP uses an exponential model to recover dynamic image data, IR-CRISPI, with its low-rank plus sparse reconstruction, is related to compressed sensing. MOCO-MAP is a successor to model-based acceleration of parametermapping (MAP) for the application in the myocardial region. To this end, it was augmented with a motion correction (MOCO) step to allow exponential fitting the signal of a still object in temporal direction. Iteratively, this introduction of prior physical knowledge together with the enforcement of consistency with the measured data can be used to reconstruct an image series from distinctly shorter sampling time than the standard exam (< 3 s opposed to about 10 s). Results show feasibility of the method as well as detectability of delayed enhancement in the myocardium, but also significant discrepancies when imaging cardiac function and artifacts caused already by minor inaccuracy of the motion correction. IR-CRISPI was developed from CRISPI, which is a real-time protocol specifically designed for functional evaluation of image data in steady-state contrast. With a reconstruction based on the separate calculation of low-rank and sparse part, it employs a softer constraint than the strict exponential model, which was possible due to sufficient temporal sampling density via spiral acquisition. The low-rank plus sparse reconstruction is fit for the use on dynamic and on inversion recovery data. Thus, motion correction is rendered unnecessary with it. IR-CRISPI was equipped with noise suppression via spatial wavelet filtering. A study comprising 10 patients with cardiac disease show medical applicability. A comparison with performed traditional reference exams offer insight into diagnostic benefits. Especially regarding patients with difficulty to hold their breath, the real-time manner of the IR-CRISPI acquisition provides a valuable alternative and an increase in robustness. In conclusion, especially with IR-CRISPI in free breathing, a major acceleration of the cardiovascular MR exam could be realized. In an acquisition of less than 100 s, it not only includes the information of two traditional protocols (cine and LGE), which take up more than 9.6 min, but also allows adjustment of TI in retrospect and yields lower artifact level with similar image quality.}, subject = {Kernspintomografie}, language = {en} } @article{RullmannPreusserPoppitzetal.2019, author = {Rullmann, Michael and Preusser, Sven and Poppitz, Sindy and Heba, Stefanie and Gousias, Konstantinos and Hoyer, Jana and Sch{\"u}tz, Tatjana and Dietrich, Arne and M{\"u}ller, Karsten and Hankir, Mohammed K. and Pleger, Burkhard}, title = {Adiposity Related Brain Plasticity Induced by Bariatric Surgery}, series = {Froniers in Human Neuroscience}, volume = {13}, journal = {Froniers in Human Neuroscience}, doi = {10.3389/fnhum.2019.00290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227168}, pages = {1-11}, year = {2019}, abstract = {Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain's homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning.}, language = {en} } @article{SchnabelCamenKnebeletal.2021, author = {Schnabel, Renate B. and Camen, Stephan and Knebel, Fabian and Hagendorff, Andreas and Bavendiek, Udo and B{\"o}hm, Michael and Doehner, Wolfram and Endres, Matthias and Gr{\"o}schel, Klaus and Goette, Andreas and Huttner, Hagen B. and Jensen, Christoph and Kirchhof, Paulus and Korosoglou, Grigorius and Laufs, Ulrich and Liman, Jan and Morbach, Caroline and Navabi, Darius G{\"u}nther and Neumann-Haefelin, Tobias and Pfeilschifter, Waltraut and Poli, Sven and Rizos, Timolaos and Rolf, Andreas and R{\"o}ther, Joachim and Sch{\"a}bitz, Wolf R{\"u}diger and Steiner, Thorsten and Thomalla, G{\"o}tz and Wachter, Rolf and Haeusler, Karl Georg}, title = {Expert opinion paper on cardiac imaging after ischemic stroke}, series = {Clinical Research in Cardiology}, volume = {110}, journal = {Clinical Research in Cardiology}, number = {7}, issn = {1861-0692}, doi = {10.1007/s00392-021-01834-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266662}, pages = {938-958}, year = {2021}, abstract = {This expert opinion paper on cardiac imaging after acute ischemic stroke or transient ischemic attack (TIA) includes a statement of the "Heart and Brain" consortium of the German Cardiac Society and the German Stroke Society. The Stroke Unit-Commission of the German Stroke Society and the German Atrial Fibrillation NETwork (AFNET) endorsed this paper. Cardiac imaging is a key component of etiological work-up after stroke. Enhanced echocardiographic tools, constantly improving cardiac computer tomography (CT) as well as cardiac magnetic resonance imaging (MRI) offer comprehensive non- or less-invasive cardiac evaluation at the expense of increased costs and/or radiation exposure. Certain imaging findings usually lead to a change in medical secondary stroke prevention or may influence medical treatment. However, there is no proof from a randomized controlled trial (RCT) that the choice of the imaging method influences the prognosis of stroke patients. Summarizing present knowledge, the German Heart and Brain consortium proposes an interdisciplinary, staged standard diagnostic scheme for the detection of risk factors of cardio-embolic stroke. This expert opinion paper aims to give practical advice to physicians who are involved in stroke care. In line with the nature of an expert opinion paper, labeling of classes of recommendations is not provided, since many statements are based on expert opinion, reported case series, and clinical experience.}, language = {en} } @article{SchneiderHoehneSchneideretal.2022, author = {Schneider, Sonja Jasmin Maria and H{\"o}hne, Christian and Schneider, Martin and Schmitter, Marc}, title = {Photoacoustic tomography versus cone-beam computed tomography versus micro-computed tomography: Accuracy of 3D reconstructions of human teeth}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {12}, doi = {10.1371/journal.pone.0274818}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301437}, year = {2022}, abstract = {Objectives In this in-vitro study, teeth were imaged using photoacoustic tomography (PAT), cone-beam computed tomography (CBCT), and micro-computed tomography (μ-CT). The study had aim: to identify the best wavelength for PAT images to determine the accuracy of the three imaging methods, and to determine whether PAT images of teeth can achieve acceptable reconstruction quality. Methods Nineteen human mandibular single-rooted incisors were extracted from patients with trauma or periodontitis. To determine the best wavelength for acquiring photoacoustic images, all 19 teeth were scanned in vitro with PAT, using different laser wavelengths between 680 and 960 nm. The images were analyzed using image analysis software. To assess the accuracy of PAT and compare it with the accuracy of CBCT, each tooth was also scanned in vitro using CBCT and the reference standard technique of μ-CT. Subsequently, three different three-dimensional models, one for each imaging technique, were created for each tooth. Finally, the three different three-dimensional models acquired for the same tooth were matched and analyzed regarding volume and surface. Results The highest quality tooth images were achieved using the 680 nm wavelength, which showed the best contrast ratio. The full geometry of the dental root (μ-CT compared with PAT) could be visualized with relative standard deviations of 0.12 mm for the surface and -7.33 mm3 for the volume (n = 19). The full geometry of the dental root (μ-CT compared with CBCT) could be visualized with relative standard deviations of 0.06 mm for the surface and -14.56 mm3 for the volume (n = 19). The difference between the PAT-μ-CT group and CBCT-μ-CT group regarding the total average of the root surface area was not significant (p>0.06). Conclusion Images, which were acquired using PAT at 680nm showed the best contrast ration, enabling the identification of dentin, cementum and the dental pulp. No significant differences were found between the PAT-μ-CT group and CBCT-μ-CT group regarding the total average of the RSA and the total volume. Thus, three-dimensional reconstructions based on in-vitro PAT are already of acceptable reconstruction quality.}, language = {en} } @article{TerekhovElabyadSchreiber2021, author = {Terekhov, Maxim and Elabyad, Ibrahim A. and Schreiber, Laura M.}, title = {Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0255341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265737}, year = {2021}, abstract = {The development of novel multiple-element transmit-receive arrays is an essential factor for improving B\(_1\)\(^+\) field homogeneity in cardiac MRI at ultra-high magnetic field strength (B\(_0\) > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B\(_1\)\(^+\)-field that is achievable without (or before) subject-specific B\(_1\)\(^+\)-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B-1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B\(_1\)\(^+\)-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B\(_1\)\(^+\)-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.}, language = {en} } @article{TranGiaWechBleyetal.2015, author = {Tran-Gia, Johannes and Wech, Tobias and Bley, Thorsten and K{\"o}stler, Herbert}, title = {Model-Based Acceleration of Look-Locker T1 Mapping}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0122611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126436}, pages = {e0122611}, year = {2015}, abstract = {Mapping the longitudinal relaxation time \(T_1\) has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) \(T_1\) mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a \(T_1\) map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for \(T_1\) mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a \(T_1\) difference of less than 2.6\% compared to the segmented IR-LL reference in a phantom consisting of vials with \(T_1\) values between 200ms and 3000ms. In vivo, the \(T_1\) difference was smaller than 5.5\% in WM and GM of seven healthy volunteers. Additionally, the \(T_1\) values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the \(T_1\) mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate \(T_1\) mapping using radial IR-LL acquisitions without the need of any segmentation.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{WeiseBasseLuesebrinkKleinschnitzetal.2011, author = {Weise, Gesa and Basse-L{\"u}sebrink, Thomas C. and Kleinschnitz, Christoph and Kampf, Thomas and Jakob, Peter M. and Stoll, Guido}, title = {In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137792}, pages = {e28143}, year = {2011}, abstract = {Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.}, language = {en} } @phdthesis{Ye2013, author = {Ye, Yuxiang}, title = {Molecular and Cellular Magnetic Resonance Imaging of Myocardial Infarct Healing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Myokardinfarkte (MI) sind eine der h{\"a}ufigsten Todesursachen weltweit. Eine rechtzeitige Wiederherstellung des koronaren Blutflusses im isch{\"a}mischen Myokard reduziert signifikant die Sterblichkeitsrate akuter Infarkte und vermindert das ventrikul{\"a}re Remodeling. {\"U}berlebende MI-Patienten entwickeln jedoch h{\"a}ufig eine Herzinsuffizienz, die mit einer reduzierten Lebensqualit{\"a}t, hohen Sterblichkeitsrate (10\% j{\"a}hrlich), sowie hohen Kosten f{\"u}r das Gesundheitssystem einhergeht. Die Entwicklung der Herzinsuffizienz nach einem MI ist auf den hohen Verlust kontraktiler Kardiomyozyten, w{\"a}hrend der Isch{\"a}mie-Reperfusion zur{\"u}ckzuf{\"u}hren. Anschließende komplexe strukturelle und funktionelle Ver{\"a}nderungen resultieren aus Modifikationen des infarzierten und nicht infarzierten Myokards auf molekularer und zellul{\"a}rer Ebene. Die verbesserte {\"U}berlebensrate von Patienten mit akutem MI und das Fehlen effizienter Therapien, die die Entwicklung und das Fortschreiten des ventrikul{\"a}ren Remodelings verhindern, f{\"u}hren zu einer hohen Pr{\"a}valenz der Herzinsuffizienz. Die kardiale Magnetresonanztomographie (MRT) ist eine wichtige Methode zur Diagnose und Beurteilung des Myokardinfarktes. Mit dem technologischen Fortschritt wurden die Grenzen der MRT erweitert, so dass es heute m{\"o}glich ist, auch molekulare und zellul{\"a}re Ereignisse in vivo und nicht-invasiv zu untersuchen. In Kombination mit kardialer Morphologie und Funktion k{\"o}nnte die Visualisierung essentieller molekularer und zellul{\"a}rer Marker in vivo weitreichende Einblicke in den Heilungsprozess infarzierter Herzen liefern, was zu neuen Erkenntnissen f{\"u}r ein besseres Verst{\"a}ndnis und bessere Therapien des akuten MI f{\"u}hren k{\"o}nnte. In dieser Arbeit wurden Methoden f{\"u}r die molekulare und zellul{\"a}re kardiale MRT-Bildgebung der Inflammation und des Kalziumstroms im Heilungsprozess des akuten Myokardinfarktes in vivo in einem Rattenmodel mit klinischer Relevanz etabliert.}, subject = {Kernspintomografie}, language = {en} } @article{UeceylerHomolaGonzalezetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Homola, Gy{\"o}rgy A. and Gonz{\´a}lez, Hans Guerrero and Kramer, Daniela and Wanner, Christoph and Weidemann, Frank and Solymosi, L{\´a}szl{\´o} and Sommer, Claudia}, title = {Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease}, doi = {10.1371/journal.pone.0087054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112614}, year = {2014}, abstract = {A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males - females; normal - impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13\%) and 5/57 (9\%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1\%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87\%, specificity: 86\%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity.}, language = {en} }