@techreport{AlfredssonKasslerVestinetal.2022, type = {Working Paper}, author = {Alfredsson, Rebecka and Kassler, Andreas and Vestin, Jonathan and Pieska, Marcus and Amend, Markus}, title = {Accelerating a Transport Layer based 5G Multi-Access Proxy on SmartNIC}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280798}, pages = {4}, year = {2022}, abstract = {Utilizing multiple access technologies such as 5G, 4G, and Wi-Fi within a coherent framework is currently standardized by 3GPP within 5G ATSSS. Indeed, distributing packets over multiple networks can lead to increased robustness, resiliency and capacity. A key part of such a framework is the multi-access proxy, which transparently distributes packets over multiple paths. As the proxy needs to serve thousands of customers, scalability and performance are crucial for operator deployments. In this paper, we leverage recent advancements in data plane programming, implement a multi-access proxy based on the MP-DCCP tunneling approach in P4 and hardware accelerate it by deploying the pipeline on a smartNIC. This is challenging due to the complex scheduling and congestion control operations involved. We present our pipeline and data structures design for congestion control and packet scheduling state management. Initial measurements in our testbed show that packet latency is in the range of 25 μs demonstrating the feasibility of our approach.}, subject = {Datennetz}, language = {en} } @techreport{GrossmannHomeyer2023, type = {Working Paper}, author = {Großmann, Marcel and Homeyer, Tobias}, title = {Emulation of Multipath Transmissions in P4 Networks with Kathar{\´a}}, series = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, journal = {KuVS Fachgespr{\"a}ch - W{\"u}rzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS'23)}, doi = {10.25972/OPUS-32209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322095}, pages = {4}, year = {2023}, abstract = {Packets sent over a network can either get lost or reach their destination. Protocols like TCP try to solve this problem by resending the lost packets. However, retransmissions consume a lot of time and are cumbersome for the transmission of critical data. Multipath solutions are quite common to address this reliability issue and are available on almost every layer of the ISO/OSI model. We propose a solution based on a P4 network to duplicate packets in order to send them to their destination via multiple routes. The last network hop ensures that only a single copy of the traffic is further forwarded to its destination by adopting a concept similar to Bloom filters. Besides, if fast delivery is requested we provide a P4 prototype, which randomly forwards the packets over different transmission paths. For reproducibility, we implement our approach in a container-based network emulation system called Kathar{\´a}.}, language = {en} }