@phdthesis{HaddadWeber2010, author = {Haddad-Weber, Meike}, title = {Development of stem cell-based ACL- and tendon reconstruction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ruptures of the anterior cruciate ligament (ACL) and defects of the rotator cuff represent the most common ligament and tendon injuries in knee and shoulder. Both injuries represent significant implications for the patients. After an injury, the ACL and the rotator cuff both exhibit poor intrinsic healing capacities. In order to prevent further defects such as arthritis of the knee and fatty infiltration of the rotator cuff, surgical interaction is essential. In both cases, the currently used surgical techniques are far from optimal because even after the therapy many patients report problems ranging from pain and reduced mobility to complete dysfunction of the involved joint and muscles. Tissue engineering may be a possible solution. It is a promising field of regenerative medicine and might be an advantageous alternative for the treatment of musculoskeletal injuries and diseases in the near future. In this thesis, different tissue engineering based approaches were investigated. For the reconstruction of damaged or diseased ligaments and tendons, the use of MSCs and gene therapy with growth factors is especially suitable and possesses a great therapeutic potential. Therefore, the first method studied and tested in this thesis was the development of a biomaterial based construct for the repair of a ruptured ACL. The second approach represents a cell based strategy for the treatment of the fatty infiltration in the rotator cuff. The third approach was a combined cell, biomaterial, and growth factor based strategy for ACL ruptures. Biomaterial based ACL construct The implant is currently tested in a preclinical in vivo study in mini pigs. This proof-of-principle study is performed to validate the functional capability of the collagen fiber based implant under load in vivo and its population with fibroblasts which produce a ligamentogenic matrix. Cell based treatment of the fatty infiltration in the rotator cuff Regarding the treatment of the fatty infiltration of the rotator cuff in a rabbit model, the in vivo results are also promising. The group treated with autologous MSCs (+MSC group) showed a lower fat content than the untreated group (-MSC group) 6 weeks after the treatment. Furthermore, the SSP muscle of the MSC-treated animals revealed macroscopically and microscopically only few differences compared to the healthy control group. The exact underlying mechanisms leading to the positive results of the treatment are not yet fully understood and have therefore to be further investigated in the future. Cell, biomaterial, and growth factor based treatment of ACL ruptures Studies described in current literature show that collagen hydrogel scaffolds are not ideal for a complete ligament or tendon reconstruction, because of their insufficient mechanical stability. Introduced as an alternative and superior therapy, the combined strategy used in this thesis proves that the cultivation of BMP-12, -13, and IGF-1 transduced MSCs and ACL fibroblasts in a collagen hydrogel is successful. The results of the performed in vitro study reveal that the cells exhibit a fibroblastic appearance and produce a ligamentogenic matrix after 3 weeks. Furthermore, the adenoviral transduction of MSCs and ACL fibroblasts showed no negative effects on proliferation or viability of the cells nor was apoptosis caused. Therefore, the application of these cells represents a possible future therapy for a partial ligament and tendon rupture where the mechanical stability of the remaining ligament or tendon is sufficient and the healing can be improved substantially by this therapy. In general, prospective randomized clinical trials still have to prove the postulated positive effect of MSCs for the treatment of various musculoskeletal diseases, but the results obtained here are already very promising. Ideally, the treatment with MSCs is superior compared to the standard surgical procedures. Because of current safety issues the use of genetically modified cells cannot be expected to be applied clinically in the near future. In summary, the different tissue engineering approaches for novel therapies for musculoskeletal injuries and diseases invested in this thesis showed very promising results and will be further developed and tested in preclinical and clinical trials.}, subject = {Kreuzband}, language = {en} } @article{JordanHoelscherDohtFehskeetal.2015, author = {Jordan, Martin C. and Hoelscher-Doht, Stefanie and Fehske, Kai and Gilbert, Fabian and Jansen, Hendrik and Meffert, Rainer H.}, title = {Bunnell or cross-lock Bunnell suture for tendon repair? Defining the biomechanical role of suture pretension}, series = {Journal of Orthopaedic Surgery and Research}, volume = {10}, journal = {Journal of Orthopaedic Surgery and Research}, number = {192}, doi = {10.1186/s13018-015-0331-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126262}, year = {2015}, abstract = {Background Suture pretension during tendon repair is supposed to increase the resistance to gap formation. However, its effects on the Bunnell suture technique are unknown. The purpose of this study was to determine the biomechanical effects of suture pretension on the Bunnell and cross-lock Bunnell techniques for tendon repair. Methods Eighty porcine hindlimb tendons were randomly assigned to four different tendon repair groups: those repaired with or without suture pretension using either a simple Bunnell or cross-lock Bunnell technique. Pretension was applied as a 10 \% shortening of the sutured tendon. After measuring the cross-sectional diameter at the repair site, static and cyclic biomechanical tests were conducted to evaluate the initial and 5-mm gap formation forces, elongation during cyclic loading, maximum tensile strength, and mode of failure. The suture failure mechanism was also separately assessed fluoroscopically in two tendons that were repaired with steel wire. Results Suture pretension was accompanied by a 10 to 15 \% increase in the tendon diameter at the repair site. Therefore, suture pretension with the Bunnell and cross-lock Bunnell repair techniques noticeably increased the resistance to initial gap formation and 5-mm gap formation. The tension-free cross-lock Bunnell repair demonstrated more resistance to initial and 5-mm gap formation, less elongation, and higher maximum tensile strength than the tension-free Bunnell repair technique. The only difference between the tensioned cross-lock Bunnell and tensioned Bunnell techniques was a larger resistance to 5-mm gap formation with the cross-lock Bunnell technique. Use of the simple instead of cross-lock suture configuration led to failure by suture cut out, as demonstrated fluoroscopically. Conclusion Based on these results, suture pretension decreases gapping and elongation after tendon repair, and those effects are stronger when using a cross-lock, rather than a regular Bunnell suture. However, pretension causes an unfavorable increase in the tendon diameter at the repair site, which may adversely affect wound healing.}, language = {en} } @article{JordanHufnagelMcDonoghetal.2022, author = {Jordan, Martin C. and Hufnagel, Lukas and McDonogh, Miriam and Paul, Mila M. and Schmalzl, Jonas and Kupczyk, Eva and Jansen, Hendrik and Heilig, Philipp and Meffert, Rainer H. and Hoelscher-Doht, Stefanie}, title = {Surgical fixation of calcaneal beak fractures — biomechanical analysis of different osteosynthesis techniques}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.896790}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282792}, year = {2022}, abstract = {The calcaneal beak fracture is a rare avulsion fracture of the tuber calcanei characterized by a solid bony fragment at the Achilles tendon insertion. Treatment usually requires osteosynthesis. However, lack of biomechanical understanding of the ideal fixation technique persists. A beak fracture was simulated in synthetic bones and assigned to five different groups of fixation: A) 6.5-mm partial threaded cannulated screws, B) 4.0-mm partial threaded cannulated screws, C) 5.0-mm headless cannulated compression screws, D) 2.3-mm locking plate, and E) 2.8-mm locking plate. Different traction force levels were applied through an Achilles tendon surrogate in a material-testing machine on all stabilized synthetic bones. Outcome measures were peak-to-peak displacement, total displacement, plastic deformation, stiffness, visual-fracture-line displacement, and mode of implant failure. The 2.3- and 2.8-mm plating groups showed a high drop-out rate at 100 N tension force and failed under higher tension levels of 200 N. The fracture fixation using 4.0-mm partial threaded screws showed a significantly higher repair strength and was able to withhold cyclic loading up to 300 N. The lowest peak-to-peak displacement and the highest load-to-failure and stiffness were provided by fracture fixation using 6.5-mm partial threaded cannulated screws or 5.0-mm headless cannulated compression screws. As anticipated, large 6.5-mm screw diameters provide the best biomechanical fixation. Surprisingly, the 5.0-mm headless cannulated compression screws yield reliable stability despite the absent screw head and washer. When such large screws cannot be applied, 4.0-mm screws also allow reasonable fixation strength. Plate fixation should be implemented with precaution and in combination with a restrictive postoperative motion protocol. Finally, clinical cases about the surgical application and recovery are included.}, language = {en} }