@article{MartinSchlosserFurtwaengleretal.2021, author = {Mart{\´i}n, Ovidio Jim{\´e}nez and Schlosser, Andreas and Furtw{\"a}ngler, Rhoikos and Wegert, Jenny and Gessler, Manfred}, title = {MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates}, series = {Cancer Cell International}, volume = {21}, journal = {Cancer Cell International}, doi = {10.1186/s12935-021-02259-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265542}, year = {2021}, abstract = {Background Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. Methods We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. Results Mutation screening revealed mutation frequencies of 3\% for MYCN P44L and 0.9\% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. Conclusions The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.}, language = {en} } @article{MayrKellerPetersetal.2021, author = {Mayr, Antonia V. and Keller, Alexander and Peters, Marcell K. and Grimmer, Gudrun and Krischke, Beate and Geyer, Mareen and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238853}, pages = {7700 -- 7712}, year = {2021}, abstract = {Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.}, language = {en} } @phdthesis{Mayr2021, author = {Mayr, Antonia Veronika}, title = {Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species}, doi = {10.25972/OPUS-18292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 - General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are considered to be important factors in determining insect diversity. Yet, the relative importance of each of these factors is unknown. Using trap nests along the elevational gradient of Mt. Kilimanjaro, we tried to disentangle drivers of species richness at different trophic levels. Temperature was the major driver of species richness across trophic levels, with increasing importance of food resources at higher trophic levels in natural antagonists. Parasitism rate was both related to temperature and trophic level, indicating that the relative importance of bottom-up and top-down forces might shift with climate change. Chapter 3 - Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera Natural populations fluctuate with the availability of resources, presence of natural enemies and climatic variations. But tropical mountain seasonality is not yet well investigated. We investigated seasonal patterns in nest-building activity, functional traits and ecological rates in three different insect groups at lower and higher elevations separately. Insects were caught with trap nests which were checked monthly during a 17 months period that included three dry and three rainy seasons. Insects were grouped according to their functional guilds. All groups showed strong seasonality in nest-building activity which was higher and more synchronised among groups at lower elevations. Seasonality in nest building activity of caterpillar-hunting and spider-hunting wasps was linked to climate seasonality while in bees it was strongly linked to the availability of flowers, as well as for the survival rate and sex ratio of bees. Finding adaptations to environmental seasonality might imply that further changes in climatic seasonality by climate change could have an influence on life-history traits of tropical mountain species. Chapter 4 - Cryptic species and hidden ecological interactions of halictine bees along an elevational Gradient Strong environmental gradients such as those occurring along mountain slopes are challenging for species. In this context, hidden adaptations or interactions have rarely been considered. We used bees of the genus Lasioglossum as model organisms because Lasioglossum is the only bee genus occurring with a distribution across the entire elevational gradient at Mt. Kilimanjaro. We asked if and how (a) cuticular hydrocarbons (CHC), which act as a desiccation barrier, change in composition and chain length along with changes in temperature and humidity (b), Lasioglossum bees change their pollen diet with changing resource availability, (c) gut microbiota change with pollen diet and climatic conditions, and surface microbiota change with CHC and climatic conditions, respectively, and if changes are rather influenced by turnover in Lasioglossum species along the elevational gradient. We found physiological adaptations with climate in CHC as well as changes in communities with regard to pollen diet and microbiota, which also correlated with each other. These results suggest that complex interactions and feedbacks among abiotic and biotic conditions determine the species composition in a community. Chapter 5 - General Discussion Abiotic and biotic factors drove species diversity, traits and interactions and they worked differently depending on the functional group that has been studied, and whether spatial or temporal units were considered. It is therefore likely, that in the light of global change, different species, traits and interactions will be affected differently. Furthermore, increasing land use intensity could have additional or interacting effects with climate change on biodiversity, even though the potential land-use effects at Mt. Kilimanjaro are still low and not impairing cavity-nesting Hymenoptera so far. Further studies should address species networks which might reveal more sensitive changes. For that purpose, trap nests provide a good model system to investigate effects of global change on multiple trophic levels and may also reveal direct effects of climate change on entire life-history traits when established under different microclimatic conditions. The non-uniform effects of abiotic and biotic conditions on multiple aspects of biodiversity revealed with this study also highlight that evaluating different aspects of biodiversity can give a more comprehensive picture than single observations.}, subject = {land use}, language = {en} } @article{MeirKannapinDiefenbacheretal.2021, author = {Meir, Michael and Kannapin, Felix and Diefenbacher, Markus and Ghoreishi, Yalda and Kollmann, Catherine and Flemming, Sven and Germer, Christoph-Thomas and Waschke, Jens and Leven, Patrick and Schneider, Reiner and Wehner, Sven and Burkard, Natalie and Schlegel, Nicolas}, title = {Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms22041887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258913}, year = {2021}, abstract = {Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAP\(^{cre}\) x Ai14\(^{floxed}\) mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor.}, language = {en} } @article{MorisChristmannWirtgenetal.2021, author = {Moris, Victoria C. and Christmann, Katharina and Wirtgen, Aline and Belokobylskij, Sergey A. and Berg, Alexander and Liebig, Wolf-Harald and Soon, Villu and Baur, Hannes and Schmitt, Thomas and Niehuis, Oliver}, title = {Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes}, series = {Chemoecology}, volume = {31}, journal = {Chemoecology}, number = {5}, issn = {0937-7409}, doi = {10.1007/s00049-021-00350-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306999}, pages = {311-322}, year = {2021}, abstract = {The mason wasp Odynerus spinipes shows an exceptional case of intrasexual cuticular hydrocarbon (CHC) profile dimorphism. Females of this species display one of two CHC profiles (chemotypes) that differ qualitatively and quantitatively from each other. The ratio of the two chemotypes was previously shown to be close to 1:1 at three sites in Southern Germany, which might not be representative given the Palearctic distribution of the species. To infer the frequency of the two chemotypes across the entire distributional range of the species, we analyzed with GC-MS the CHC profile of 1042 dry-mounted specimens stored in private and museum collections. We complemented our sampling by including 324 samples collected and preserved specifically for studying their CHCs. We were capable of reliably identifying the chemotypes in 91\% of dry-mounted samples, some of which collected almost 200 years ago. We found both chemotypes to occur in the Far East, the presumed glacial refuge of the species, and their frequency to differ considerably between sites and geographic regions. The geographic structure in the chemotype frequencies could be the result of differential selection regimes and/or different dispersal routes during the colonization of the Western Palearctic. The presented data pave the route for disentangling these factors by providing information where to geographically sample O. spinipes for population genetic analyses. They also form the much-needed basis for future studies aiming to understand the evolutionary and geographic origin as well as the genetics of the astounding CHC profile dimorphism that O. spinipes females exhibit.}, language = {en} } @article{MrestaniPauliKollmannsbergeretal.2021, author = {Mrestani, Achmed and Pauli, Martin and Kollmannsberger, Philip and Repp, Felix and Kittel, Robert J. and Eilers, Jens and Doose, S{\"o}ren and Sauer, Markus and Sir{\´e}n, Anna-Leena and Heckmann, Manfred and Paul, Mila M.}, title = {Active zone compaction correlates with presynaptic homeostatic potentiation}, series = {Cell Reports}, volume = {37}, journal = {Cell Reports}, number = {1}, doi = {10.1016/j.celrep.2021.109770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265497}, pages = {109770}, year = {2021}, abstract = {Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.}, language = {en} } @article{MuellerKoehlerHendricksetal.2021, author = {M{\"u}ller, Sophie and K{\"o}hler, Franziska and Hendricks, Anne and Kastner, Carolin and B{\"o}rner, Kevin and Diers, Johannes and Lock, Johan F. and Petritsch, Bernhard and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Brain metastases from colorectal cancer: a systematic review of the literature and meta-analysis to establish a guideline for daily treatment}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers13040900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228883}, year = {2021}, abstract = {Colorectal cancer (CRC) is the third most common malignancy worldwide. Most patients with metastatic CRC develop liver or lung metastases, while a minority suffer from brain metastases. There is little information available regarding the presentation, treatment, and overall survival of brain metastases (BM) from CRC. This systematic review and meta-analysis includes data collected from three major databases (PubMed, Cochrane, and Embase) based on the key words "brain", "metastas*", "tumor", "colorectal", "cancer", and "malignancy". In total, 1318 articles were identified in the search and 86 studies matched the inclusion criteria. The incidence of BM varied between 0.1\% and 11.5\%. Most patients developed metastases at other sites prior to developing BM. Lung metastases and KRAS mutations were described as risk factors for additional BM. Patients with BM suffered from various symptoms, but up to 96.8\% of BM patients were asymptomatic at the time of BM diagnosis. Median survival time ranged from 2 to 9.6 months, and overall survival (OS) increased up to 41.1 months in patients on a multimodal therapy regimen. Several factors including age, blood levels of carcinoembryonic antigen (CEA), multiple metastases sites, number of brain lesions, and presence of the KRAS mutation were predictors of OS. For BM diagnosis, MRI was considered to be state of the art. Treatment consisted of a combination of surgery, radiation, or systemic treatment.}, language = {en} } @article{NjovuSteffanDewenterGebertetal.2021, author = {Njovu, Henry K. and Steffan-Dewenter, Ingolf and Gebert, Friederike and Schellenberger Costa, David and Kleyer, Michael and Wagner, Thomas and Peters, Marcell K.}, title = {Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro}, series = {Ecology}, volume = {102}, journal = {Ecology}, number = {12}, doi = {10.1002/ecy.3521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257343}, year = {2021}, abstract = {Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.}, language = {en} } @article{OsmanogluKhaledAlSeiariAlKhoorietal.2021, author = {Osmanoglu, {\"O}zge and Khaled AlSeiari, Mariam and AlKhoori, Hasa Abduljaleel and Shams, Shabana and Bencurova, Elena and Dandekar, Thomas and Naseem, Muhammad}, title = {Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.708417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249260}, year = {2021}, abstract = {Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{OthmanFathyBekhitetal.2021, author = {Othman, Eman M. and Fathy, Moustafa and Bekhit, Amany Abdlrehim and Abdel-Razik, Abdel-Razik H. and Jamal, Arshad and Nazzal, Yousef and Shams, Shabana and Dandekar, Thomas and Naseem, Muhammad}, title = {Modulatory and toxicological perspectives on the effects of the small molecule kinetin}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules26030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223064}, year = {2021}, abstract = {Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.}, language = {en} } @article{PanzerZhangKonteetal.2021, author = {Panzer, Sabine and Zhang, Chong and Konte, Tilen and Br{\"a}uer, Celine and Diemar, Anne and Yogendran, Parathy and Yu-Strzelczyk, Jing and Nagel, Georg and Gao, Shiqiang and Terpitz, Ulrich}, title = {Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates}, series = {Frontiers in Molecular Biosciences}, volume = {8}, journal = {Frontiers in Molecular Biosciences}, issn = {2296-889X}, doi = {10.3389/fmolb.2021.750528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249248}, year = {2021}, abstract = {Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.}, language = {en} } @article{PauliPaulProppertetal.2021, author = {Pauli, Martin and Paul, Mila M. and Proppert, Sven and Mrestani, Achmed and Sharifi, Marzieh and Repp, Felix and K{\"u}rzinger, Lydia and Kollmannsberger, Philip and Sauer, Markus and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, doi = {10.1038/s42003-021-01939-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259830}, pages = {407}, year = {2021}, abstract = {Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution.}, language = {en} } @article{PeixotoJanakiRamanSchlickeretal.2021, author = {Peixoto, Joana and Janaki-Raman, Sudha and Schlicker, Lisa and Schmitz, Werner and Walz, Susanne and Winkelkotte, Alina M. and Herold-Mende, Christel and Soares, Paula and Schulze, Almut and Lima, Jorge}, title = {Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers13061327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234110}, year = {2021}, abstract = {Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM.}, language = {en} } @article{PetersKaiserFinketal.2021, author = {Peters, Simon and Kaiser, Lena and Fink, Julian and Schumacher, Fabian and Perschin, Veronika and Schlegel, Jan and Sauer, Markus and Stigloher, Christian and Kleuser, Burkhard and Seibel, Juergen and Schubert-Unkmeir, Alexandra}, title = {Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-83813-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259147}, pages = {4300}, year = {2021}, abstract = {Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.}, language = {en} } @article{PrietoGarciaTomaškovićShahetal.2021, author = {Prieto-Garcia, Cristian and Tomašković, Ines and Shah, Varun Jayeshkumar and Dikic, Ivan and Diefenbacher, Markus}, title = {USP28: oncogene or tumor suppressor? a unifying paradigm for squamous cell carcinoma}, series = {Cells}, volume = {10}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells10102652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248409}, year = {2021}, abstract = {Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.}, language = {en} } @article{PuetzKramRauhetal.2021, author = {P{\"u}tz, Stephanie M. and Kram, Jette and Rauh, Elisa and Kaiser, Sophie and Toews, Romy and Lueningschroer-Wang, Yi and Rieger, Dirk and Raabe, Thomas}, title = {Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like symptoms in Drosophila}, series = {Disease Models \& Mechanisms}, volume = {14}, journal = {Disease Models \& Mechanisms}, number = {6}, doi = {10.1242/dmm.047811}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259222}, pages = {dmm047811}, year = {2021}, abstract = {Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.}, language = {en} } @article{RajabBisminSchwarzeetal.2021, author = {Rajab, Suhaila and Bismin, Leah and Schwarze, Simone and Pinggera, Alexandra and Greger, Ingo H. and Neuweiler, Hannes}, title = {Allosteric coupling of sub-millisecond clamshell motions in ionotropic glutamate receptor ligand-binding domains}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02605-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261678}, year = {2021}, abstract = {Ionotropic glutamate receptors (iGluRs) mediate signal transmission in the brain and are important drug targets. Structural studies show snapshots of iGluRs, which provide a mechanistic understanding of gating, yet the rapid motions driving the receptor machinery are largely elusive. Here we detect kinetics of conformational change of isolated clamshell-shaped ligand-binding domains (LBDs) from the three major iGluR sub-types, which initiate gating upon binding of agonists. We design fluorescence probes to measure domain motions through nanosecond fluorescence correlation spectroscopy. We observe a broad kinetic spectrum of LBD dynamics that underlie activation of iGluRs. Microsecond clamshell motions slow upon dimerization and freeze upon binding of full and partial agonists. We uncover allosteric coupling within NMDA LBD hetero-dimers, where binding of L-glutamate to the GluN2A LBD stalls clamshell motions of the glycine-binding GluN1 LBD. Our results reveal rapid LBD dynamics across iGluRs and suggest a mechanism of negative allosteric cooperativity in NMDA receptors.}, language = {en} } @article{RedlichMartinSteffan‐Dewenter2021, author = {Redlich, Sarah and Martin, Emily A. and Steffan-Dewenter, Ingolf}, title = {Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems}, series = {Journal of Applied Ecology}, volume = {58}, journal = {Journal of Applied Ecology}, number = {3}, doi = {10.1111/1365-2664.13821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228345}, pages = {507 -- 517}, year = {2021}, abstract = {Input-driven, modern agriculture is commonly associated with large-scale threats to biodiversity, the disruption of ecosystem services and long-term risks to food security and human health. A switch to more sustainable yet highly productive farming practices seems unavoidable. However, an integrative evaluation of targeted management schemes at field and landscape scales is currently lacking. Furthermore, the often-disproportionate influence of soil conditions and agrochemicals on yields may mask the benefits of biodiversity-driven ecosystem services. Here, we used a real-world ecosystem approach to identify sustainable management practices for enhanced functional biodiversity and yield on 28 temperate wheat fields. Using path analysis, we assessed direct and indirect links between soil, crop and landscape management with natural enemies and pests, as well as follow-on effects on yield quantity and quality. A paired-field design with a crossed insecticide-fertilizer experiment allowed us to control for the relative influence of soil characteristics and agrochemical inputs. We demonstrate that biodiversity-enhancing management options such as reduced tillage, crop rotation diversity and small field size can enhance natural enemies without relying on agrochemical inputs. Similarly, we show that in this system controlling pests and weeds by agrochemical means is less relevant than expected for final crop productivity. Synthesis and applications. Our study highlights soil, crop and landscape management practices that can enhance beneficial biodiversity while reducing agrochemical usage and negative environmental impacts of conventional agriculture. The diversification of cropping systems and conservation tillage are practical measures most farmers can implement without productivity losses. Combining local measures with improved landscape management may also strengthen the sustainability and resilience of cropping systems in light of future global change.}, language = {en} } @article{RiedmeierDecarolisHaubitzetal.2021, author = {Riedmeier, Maria and Decarolis, Boris and Haubitz, Imme and M{\"u}ller, Sophie and Uttinger, Konstantin and B{\"o}rner, Kevin and Reibetanz, Joachim and Wiegering, Armin and H{\"a}rtel, Christoph and Schlegel, Paul-Gerhardt and Fassnacht, Martin and Wiegering, Verena}, title = {Adrenocortical carcinoma in childhood: a systematic review}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers13215266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248507}, year = {2021}, abstract = {Adrenocortical tumors are rare in children. This systematic review summarizes the published evidence on pediatric adrenocortical carcinoma (ACC) to provide a basis for a better understanding of the disease, investigate new molecular biomarkers and therapeutic targets, and define which patients may benefit from a more aggressive therapeutic approach. We included 137 studies with 3680 ACC patients (~65\% female) in our analysis. We found no randomized controlled trials, so this review mainly reflects retrospective data. Due to a specific mutation in the TP53 gene in ~80\% of Brazilian patients, that cohort was analyzed separately from series from other countries. Hormone analysis was described in 2569 of the 2874 patients (89\%). Most patients were diagnosed with localized disease, whereas 23\% had metastasis at primary diagnosis. Only 72\% of the patients achieved complete resection. In 334 children (23\%), recurrent disease was reported: 81\% — local recurrence, 19\% (n = 65) — distant metastases at relapse. Patients < 4 years old had a different distribution of tumor stages and hormone activity and better overall survival (p < 0.001). Although therapeutic approaches are typically multimodal, no consensus is available on effective standard treatments for advanced ACC. Thus, knowledge regarding pediatric ACC is still scarce and international prospective studies are needed to implement standardized clinical stratifications and risk-adapted therapeutic strategies.}, language = {en} } @article{RothHackerHeidrichetal.2021, author = {Roth, Nicolas and Hacker, Herrmann Heinrich and Heidrich, Lea and Friess, Nicolas and Garc{\´i}a-Barroas, Enrique and Habel, Jan Christian and Thorn, Simon and M{\"u}ler, J{\"o}rg}, title = {Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {6}, doi = {10.1111/ecog.05522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258731}, pages = {941-952}, year = {2021}, abstract = {The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (-38\%), abundance (-53\%) and biomass (-57\%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62\%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches.}, language = {en} } @phdthesis{Roth2021, author = {Roth, Nicolas M{\´e}riadec Max Andr{\´e}}, title = {Temporal development of communities with a focus on insects, in time series of one to four decades}, doi = {10.25972/OPUS-23549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235499}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Changes and development are fundamental principles in biocenoses and can affect a multitude of ecological processes. In insect communities phenological and density changes, changes in species richness and community composition, as well as interactions between those changes, are the most important macro processes. However, climate change and other factors like habitat degradation and loss alter these processes leading to shifts and general biodiversity declines. Even though knowledge about insect decline in central Europe increased during the last decades, there are significant knowledge gaps about the development of insect communities in certain habitats and taxa. For example, insect communities in small lentic as well as in forested habitats are under-sampled and reported to be less endangered than communities in other habitats. Furthermore, the changes within habitats and taxa are additionally influenced by certain traits, like host or feeding specialization. To disentangle these influences and to increase the knowledge about the general long-term development of insect communities, comprehensive long-term monitoring studies are needed. In addition, long-term effects of conservation strategies should also be evaluated on large time scales in order to be able to decide on a scientific base which strategies are effective in promoting possibly declining taxa. Hence, this thesis also tackles the effects of an integrative conservation strategy on wood dependent beetle and fungi, beside the development of water beetle and macro moth communities over multiple decades. In Chapter 2 I present a study on the development of water beetle communities (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. Time-standardized capture per waterbody was used during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. Results showed annual declines in both species number (ca. -1\%) and abundance (ca. -2\%). In addition, community composition shifted over time in part due to changing pH values. Hence, the recorded changes during the 28-year study period partly reflect natural succession processes. However, since also moor-related beetle species decreased significantly, it is likely that water beetles in southern Germany are also threatened by non-successional factors, including desiccation, increased nitrogen input and/or mineralization, as well as the loss of specific habitats. The results suggest, that in small to midsize lentic waterbodies, current development should aim for constant creation of new water bodies and protection of moor waterbodies in order to protect water beetle communities on a landscape scale. In Chapter 3 I present an analysis of the development of nocturnal macro moth species richness, abundance and biomass over four decades in forests of southern Germany. Two local scale data sets featuring a coppiced oak forest as well as an oak high forest were analysed separately from a regional data set representing all forest types in the temperate zone of Central Europe. At the regional scale species richness, abundance and biomass showed annual declines of ca. 1 \%, 1.3 \% and 1.4 \%, respectively. These declines were more pronounced in plant host specialists and in dark coloured species. In contrast, species richness increased by ca. 1.5 \% annually in the coppiced forest, while no significant trends were found in the high forest. In contrast to past assumptions, insect decline apparently affects also hyper diverse insect groups in forests. Since host specialists and dark coloured species were affected more heavily by the decline than other groups, habitat loss and climate change seem to be potential drivers of the observed trends. However, the positive development of species richness in the coppiced oak forest indicates that maintaining complex and diverse forest ecosystems through active management might compensate for negative trends in biodiversity. Chapter 4 features a study specifically aiming to investigate the long-term effect of deadwood enrichment as an integrative conservation strategy on saproxylic beetles and fungi in a central European beech forest at a landscape scale. A before-after control-impact design, was used to compare assemblages and gamma diversities of saproxylic organisms (beetles and fungi) in strictly protected old-growth forest areas (reserves) and previously moderately and intensively managed forest areas. Forests were sampled one year before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Ten years after the start of the dead-wood enrichment, neither gamma diversities of saproxylic organisms nor species composition of beetles did reflect the previous management types anymore. However, fungal species composition still mirrored the previous management gradient. The results demonstrated that intentional enrichment of dead wood at the landscape scale can effectively restore communities of saproxylic organisms and may thus be a suitable strategy in addition to permanent strict reserves in order to protect wood dependent organisms in Europe. In this thesis I showed, that in contrast to what was assumed and partly reported so far, also water beetles in lentic water bodies and macro moths in forests decreased in species richness, abundance and biomass during the last three to four decades. In line with earlier studies, especially dark coloured species and specialists decreased more than light-coloured species and generalists. The reasons for these declines could partly be attributed to natural processes and pollution and possibly to climate change. However, further studies, especially experimental ones, will be needed to achieve a better understanding of the reasons for insect decline. Furthermore, analyses of time series data should be interpreted cautiously especially if the number of sampling years is smaller than ten years. In addition, validation techniques such as left- and right- censoring and cross validation should be used in order to proof the robustness of the analyses. However, the lack of knowledge, we are still facing today, should not prevent scientists and practitioners from applying conservation measures. In order to prove the effectiveness of such measures, long-term monitoring is crucial. Such control of success is essential for evidence based and thus adapted conservation strategies of threatened organisms.}, subject = {climate change}, language = {en} } @article{RotherKraftSmithetal.2021, author = {Rother, Lisa and Kraft, Nadine and Smith, Dylan B. and El Jundi, Basil and Gill, Richard J. and Pfeiffer, Keram}, title = {A micro-CT-based standard brain atlas of the bumblebee}, series = {Cell and Tissue Research}, volume = {386}, journal = {Cell and Tissue Research}, number = {1}, issn = {1432-0878}, doi = {10.1007/s00441-021-03482-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267783}, pages = {29-45}, year = {2021}, abstract = {In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.}, language = {en} } @phdthesis{Roeschert2021, author = {R{\"o}schert, Isabelle}, title = {Aurora-A prevents transcription-replication conflicts in MYCN-amplified neuroblastoma}, doi = {10.25972/OPUS-24303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neuroblastoma is the most abundant, solid, extracranial tumor in early childhood and the leading cause of cancer-related childhood deaths worldwide. Patients with high-risk neuroblastoma often show MYCN-amplification and elevated levels of Aurora-A. They have a low overall survival and despite multimodal therapy options a poor therapeutic prognosis. MYCN-amplified neuroblastoma cells depend on Aurora-A functionality. Aurora-A stabilizes MYCN and prevents it from proteasomal degradation by competing with the E3 ligase SCFFBXW7. Interaction between Aurora-A and MYCN can be observed only in S phase of the cell cycle and activation of Aurora-A can be induced by MYCN in vitro. These findings suggest the existence of a profound interconnection between Aurora-A and MYCN in S phase. Nevertheless, the details remain elusive and were investigated in this study. Fractionation experiments show that Aurora-A is recruited to chromatin in S phase in a MYCN-dependent manner. Albeit being unphosphorylated on the activating T288 residue, Aurora-A kinase activity was still present in S phase and several putative, novel targets were identified by phosphoproteomic analysis. Particularly, eight phosphosites dependent on MYCN-activated Aurora-A were identified. Additionally, phosphorylation of serine 10 on histone 3 was verified as a target of this complex in S phase. ChIP-sequencing experiments reveal that Aurora-A regulates transcription elongation as well as histone H3.3 variant incorporation in S phase. 4sU-sequencing as well as immunoblotting demonstrated that Aurora-A activity impacts splicing. PLA measurements between the transcription and replication machinery revealed that Aurora-A prevents the formation of transcription-replication conflicts, which activate of kinase ATR. Aurora-A inhibitors are already used to treat neuroblastoma but display dose-limiting toxicity. To further improve Aurora-A based therapies, we investigated whether low doses of Aurora-A inhibitor combined with ATR inhibitor could increase the efficacy of the treatment albeit reducing toxicity. The study shows that the combination of both drugs leads to a reduction in cell growth as well as an increase in apoptosis in MYCN-amplified neuroblastoma cells, which is not observable in MYCN non-amplified neuroblastoma cells. This new approach was also tested by a collaboration partner in vivo resulting in a decrease in tumor burden, an increase in overall survival and a cure of 25\% of TH-MYCN mice. These findings indicate indeed a therapeutic window for targeting MYCN-amplified neuroblastoma.}, subject = {Neuroblastom}, language = {en} } @phdthesis{Ruedenauer2021, author = {R{\"u}denauer, Fabian}, title = {Nutrition facts of pollen: nutritional quality and how it affects reception and perception in bees}, doi = {10.25972/OPUS-21254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nutrients belong to the key elements enabling life and influencing an organism's fitness. The intake of nutrients in the right amounts and ratios can increase fitness; strong deviations from the optimal intake target can decrease fitness. Hence, the ability to assess the nutritional profile of food would benefit animals. To achieve this, they need the according nutrient receptors, the ability to interpret the receptor information via perceptive mechanisms, and the ability to adjust their foraging behavior accordingly. Additionally, eventually existing correlations between the nutrient groups and single nutrient compounds in food could help them to achieve this adjustment. A prominent interaction between food and consumer is the interaction between flowering plants (angiosperms) and animal pollinators. Usually both of the interacting partners benefit from this mutualistic interaction. Plants are pollinated while pollinators get a (most of the times) nutritional reward in form of nectar and/or pollen. As similar interactions between plants and animals seem to have existed even before the emergence of angiosperms, these interactions between insects and angiosperms very likely have co-evolved right from their evolutionary origin. Therefore, insect pollinators with the ability to assess the nutritional profile may have shaped the nutritional profile of plant species depending on them for their reproduction via selection pressure. In Chapter I of this thesis the pollen nutritional profile of many plant species was analyzed in the context of their phylogeny and their dependence on insect pollinators. In addition, correlations between the nutrients were investigated. While the impact of phylogeny on the pollen protein content was little, the mutual outcome of both of the studies included in this chapter is that protein content of pollen is mostly influenced by the plant's dependence on insect pollinators. Several correlations found between nutrients within and between the nutrient groups could additionally help the pollinators to assess the nutrient profile of pollen. An important prerequisite for this assessment would be that the pollinators are able to differentiate between pollen of different plant species. Therefore, in Chapter II it was investigated whether bees have this ability. Specifically, it was investigated whether honeybees are able to differentiate between pollen of two different, but closely related plant species and whether bumblebees prefer one out of three pollen mixes, when they were fed with only one of them as larvae. Honeybees indeed were able to differentiate between the pollen species and bumblebees preferred one of the pollen mixes to the pollen mix they were fed as larvae, possibly due to its nutritional content. Therefore, the basis for pollen nutrient assessment is given in bees. However, there also was a slight preference for the pollen fed as larvae compared to another non-preferred pollen mix, at least hinting at the retention of larval memory in adult bumblebees. Chapter III looks into nutrient perception of bumblebees more in detail. Here it was shown that they are principally able to perceive amino acids and differentiate between them as well as different concentrations of the same amino acid. However, they do not seem to be able to assess the amino acid content in pollen or do not focus on it, but instead seem to focus on fatty acids, for which they could not only perceive concentration differences, but also were able to differentiate between. These findings were supported by feeding experiments in which the bumblebees did not prefer any of the pollen diets containing less or more amino acids but preferred pollen with less fatty acids. In no choice feeding experiments, bumblebees receiving a diet with high fatty acid content accepted undereating other nutrients instead of overeating fat, leading to increased mortality and the inability to reproduce. Hence, the importance of fat in pollen needs to be looked into further. In conclusion, this thesis shows that the co-evolution of flowering plants and pollinating insects could be even more pronounced than thought before. Insects do not only pressure the plants to produce high quality nectar, but also pressure those plants depending on insect pollination to produce high quality pollen. The reason could be the insects' ability to receive and perceive certain nutrients, which enables them to forage selectively leading to a higher reproductive success of plants with a pollinator-suitable nutritional pollen profile.}, subject = {Pollen}, language = {en} } @article{ScheinerLimMeixneretal.2021, author = {Scheiner, Ricarda and Lim, Kayun and Meixner, Marina D. and Gabel, Martin S.}, title = {Comparing the appetitive learning performance of six European honeybee subspecies in a common apiary}, series = {Insects}, volume = {12}, journal = {Insects}, number = {9}, issn = {2075-4450}, doi = {10.3390/insects12090768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245180}, year = {2021}, abstract = {The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.}, language = {en} } @article{SchererFleishmanJonesetal.2021, author = {Scherer, Marc and Fleishman, Sarel J. and Jones, Patrik R. and Dandekar, Thomas and Bencurova, Elena}, title = {Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.673005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240598}, year = {2021}, abstract = {To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.}, language = {en} } @article{SchilcherHilsmannRauscheretal.2021, author = {Schilcher, Felix and Hilsmann, Lioba and Rauscher, Lisa and Değirmenci, Laura and Krischke, Markus and Krischke, Beate and Ankenbrand, Markus and Rutschmann, Benjamin and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {In vitro rearing changes social task performance and physiology in honeybees}, series = {Insects}, volume = {13}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects13010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252305}, year = {2021}, abstract = {In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.}, language = {en} } @article{SchilcherThammStrubeBlossetal.2021, author = {Schilcher, Felix and Thamm, Markus and Strube-Bloss, Martin and Scheiner, Ricarda}, title = {Opposing actions of octopamine and tyramine on honeybee vision}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, issn = {2218-273X}, doi = {10.3390/biom11091374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246214}, year = {2021}, abstract = {The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.}, language = {en} } @article{SchmitzKodererElMeseryetal.2021, author = {Schmitz, Werner and Koderer, Corinna and El-Mesery, Mohamed and Gobik, Sebastian and Sampers, Rene and Straub, Anton and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {Metabolic fingerprinting of murine L929 fibroblasts as a cell-based tumour suppressor model system for methionine restriction}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22063039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259198}, year = {2021}, abstract = {Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.}, language = {en} } @article{SchmitzRiesKodereretal.2021, author = {Schmitz, Werner and Ries, Elena and Koderer, Corinna and V{\"o}lter, Maximilian Friedrich and W{\"u}nsch, Anna Chiara and El-Mesery, Mohamed and Frackmann, Kyra and K{\"u}bler, Alexander Christian and Linz, Christian and Seher, Axel}, title = {Cysteine restriction in murine L929 fibroblasts as an alternative strategy to methionine restriction in cancer therapy}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms222111630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265486}, year = {2021}, abstract = {Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level.}, language = {en} } @article{SchneiderSchauliesSchumacherWiggeretal.2021, author = {Schneider-Schaulies, Sibylle and Schumacher, Fabian and Wigger, Dominik and Sch{\"o}l, Marie and Waghmare, Trushnal and Schlegel, Jan and Seibel, J{\"u}rgen and Kleuser, Burkhard}, title = {Sphingolipids: effectors and Achilles heals in viral infections?}, series = {Cells}, volume = {10}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells10092175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245151}, year = {2021}, abstract = {As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.}, language = {en} } @article{SchubertSchulzeProdromouetal.2021, author = {Schubert, Jonathan and Schulze, Andrea and Prodromou, Chrisostomos and Neuweiler, Hannes}, title = {Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-27286-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265754}, year = {2021}, abstract = {Many proteins are molecular machines, whose function is dependent on multiple conformational changes that are initiated and tightly controlled through biochemical stimuli. Their mechanistic understanding calls for spectroscopy that can probe simultaneously such structural coordinates. Here we present two-colour fluorescence microscopy in combination with photoinduced electron transfer (PET) probes as a method that simultaneously detects two structural coordinates in single protein molecules, one colour per coordinate. This contrasts with the commonly applied resonance energy transfer (FRET) technique that requires two colours per coordinate. We demonstrate the technique by directly and simultaneously observing three critical structural changes within the Hsp90 molecular chaperone machinery. Our results reveal synchronicity of conformational motions at remote sites during ATPase-driven closure of the Hsp90 molecular clamp, providing evidence for a cooperativity mechanism in the chaperone's catalytic cycle. Single-molecule PET fluorescence microscopy opens up avenues in the multi-dimensional exploration of protein dynamics and allosteric mechanisms.}, language = {en} } @phdthesis{Schuster2021, author = {Schuster, Sarah}, title = {Analysis of \(Trypanosoma\) \(brucei\) motility and the infection process in the tsetse fly vector}, doi = {10.25972/OPUS-19269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192691}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {African trypanosomes are protist pathogens that are infective for a wide spectrum of mammalian hosts. Motility has been shown to be essential for their survival and represents an important virulence factor. Trypanosoma brucei is transmitted by the bite of the bloodsucking tsetse fly, the only vector for these parasites. The voyage through the fly is complex and requires several migration, proliferation and differentiation steps, which take place in a defined order and in specific fly tissues. The first part of this doctoral thesis deals with the establishment of the trypanosome tsetse system as a new model for microswimmer analysis. There is an increasing interdisciplinary interest in microbial motility, but a lack of accessible model systems. Therefore, this work introduces the first enclosed in vivo host parasite system that is suitable for analysis of diverse microswimmer types in specific microenvironments. Several methods were used and adapted to gain unprecedented insights into trypanosome motion, the fly´s interior architecture and the physical interaction between host and parasite. This work provides a detailed overview on trypanosome motile behavior as a function of development in diverse host surroundings. In additional, the potential use of artificial environments is shown. This can be used to partly abstract the complex fly architecture and analyze trypanosome motion in defined nature inspired geometries. In the second part of the thesis, the infection of the tsetse fly is under investigation. Two different trypanosome forms exist in the blood: proliferative slender cells and cell cycle arrested stumpy cells. Previous literature states that stumpy cells are pre adapted to survive inside the fly, whereas slender cells die shortly after ingestion. However, infection experiments in our laboratory showed that slender cells were also potentially infective. During this work, infections were set up so as to minimize the possibility of stumpy cells being ingested, corroborating the observation that slender cells are able to infect flies. Using live cell microscopy and fluorescent reporter cell lines, a comparative analysis of the early development following infection with either slender or stumpy cells was performed. The experiments showed, for the first time, the survival of slender trypanosomes and their direct differentiation to the procyclic midgut stage, contradicting the current view in the field of research. Therefore, we can shift perspectives in trypanosome biology by proposing a revised life cycle model of T. brucei, where both bloodstream stages are infective for the vector.}, subject = {Motilit{\"a}t}, language = {en} } @article{SchusterLisackSubotaetal.2021, author = {Schuster, Sarah and Lisack, Jaime and Subota, Ines and Zimmermann, Henriette and Reuter, Christian and Mueller, Tobias and Morriswood, Brooke and Engstler, Markus}, title = {Unexpected plasiticty in the life cycle of Trypanosoma brucei}, series = {eLife}, volume = {10}, journal = {eLife}, doi = {10.7554/eLife.66028.sa2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261744}, year = {2021}, abstract = {African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host's circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.}, language = {en} } @article{SeiboldHothornGossneretal.2021, author = {Seibold, Sebastian and Hothorn, Torsten and Gossner, Martin M. and Simons, Nadja K. and Bl{\"u}thgen, Nico and M{\"u}ller, J{\"o}rg and Ambarl{\i}, Didem and Ammer, Christian and Bauhus, J{\"u}rgen and Fischer, Markus and Habel, Jan C. and Penone, Caterina and Schall, Peter and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228309}, pages = {144 -- 148}, year = {2021}, abstract = {Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land-use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1-18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter- and longer-term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671-674) based on a 10-year multi-site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include 'year' as random effect, as suggested by Daskalova et al. (2021), fail to detect non-linear trends and assume that consecutive years are independent samples which is questionable for insect time-series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short-term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions.}, language = {en} } @article{ShityakovSkorbFoersteretal.2021, author = {Shityakov, Sergey and Skorb, Ekaterina V. and F{\"o}rster, Carola Y. and Dandekar, Thomas}, title = {Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease}, series = {Frontiers in Chemistry}, volume = {9}, journal = {Frontiers in Chemistry}, issn = {2296-2646}, doi = {10.3389/fchem.2021.736509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248703}, year = {2021}, abstract = {Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.}, language = {en} } @article{SivarajanKessieOberwinkleretal.2021, author = {Sivarajan, Rinu and Kessie, David Komla and Oberwinkler, Heike and Pallmann, Niklas and Walles, Thorsten and Scherzad, Agmal and Hackenberg, Stephan and Steinke, Maria}, title = {Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.797491}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253302}, year = {2021}, abstract = {To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens.}, language = {en} } @phdthesis{Solger2021, author = {Solger, Franziska}, title = {Central role of sphingolipids on the intracellular survival of \(Neisseria\) \(gonorrhoeae\) in epithelial cells}, doi = {10.25972/OPUS-24753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae are Gram-negative bacteria with diplococcal shape. As an obligate human pathogen, it is the causative agent of gonorrhoea, a sexually transmitted disease. Gonococci colonize a variety of mucosal tissues, mainly the urogenital tract in men and women. Occasionally N. gonorrhoeae invades the bloodstream, leading to disseminated gonococcal infection. These bacteria possess a repertoire of virulence factors, which expression patterns can be adapted to the environmental conditions of the host. Through the accumulation of antibiotic resistances and in absence of vaccines, some neisserial strains have the potential to spread globally and represent a major public health threat. Therefore, it is necessary to understand the exact molecular mechanisms underlying the successful infection and progression of gonococci within their host. This deeper understanding of neisserial infection and survival mechanisms is needed for the development of new therapeutic agents. In this work, the role of host-cell sphingolipids on the intracellular survival of N. gonorrhoeae was investigated. It was shown that different classes of sphingolipids strongly interact with invasive gonococci in epithelial cells. Therefore, novel and highly specific clickable sphingolipid analogues were applied to study these interactions with this pathogen. The formation of intra- and extracellular sphingosine vesicles, which were able to target gonococci, was observed. This direct interaction led to the uptake and incorporation of sphingosine into the neisserial membrane. Together with in vitro results, sphingosine was identified as a potential bactericidal reagent as part of the host cell defence. By using different classes of sphingolipids and their clickable analogues, essential structural features, which seem to trigger the bacterial uptake, were detected. Furthermore, effects of key enzymes of the sphingolipid signalling pathway were tested in a neutrophil infection model. In conclusion, the combination of click chemistry and infection biology made it possible to shed some light on the dynamic interplay between cellular sphingosine and N. gonorrhoeae. Thereby, a possible "catch-and-kill" mechanism could have been observed.}, subject = {Neisseria gonorrhoeae}, language = {en} } @article{SponslerBratman2021, author = {Sponsler, Douglas B. and Bratman, Eve Z.}, title = {Beekeeping in, of or for the city? A socioecological perspective on urban apiculture}, series = {People and Nature}, volume = {3}, journal = {People and Nature}, number = {3}, doi = {10.1002/pan3.10206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239949}, pages = {550 -- 559}, year = {2021}, abstract = {The term 'urban beekeeping' connotes a host of meanings—sociopolitical, commercial, ecological and personal—beyond the mere description of where bees and beekeepers happen to coincide. Yet, these meanings are seldom articulated explicitly or brought into critical engagement with the relevant fields of urban ecology and political ecology. Beginning with a brief account of the history of urban beekeeping in the United States, we draw upon urban ecological theory to construct a conceptual model of urban beekeeping that distinguishes beekeeping in, of and for the city. In our model, beekeeping in the city describes the mere importation of the traditionally rural practice of beekeeping into urban spaces for the private reasons of the individual beekeeper, whereas beekeeping of the city describes beekeeping that is consciously tailored to the urban context, often accompanied by (semi)professionalization of beekeepers and the formation of local expert communities (i.e. beekeeping associations). Beekeeping for the city describes a shift in mindset in which beekeeping is directed to civic ends beyond the boundaries of the beekeeping community per se. Using this framework, we identify and discuss specific socioecological assets and liabilities of urban beekeeping, and how these relate to beekeeping in, of and for the city. We then formulate actionable guidelines for maturing the practice of urban beekeeping into a beneficent and self-critical form of urban ecological citizenship; these include fostering self-regulation within the beekeeping community, harnessing beekeeping as a 'gateway' experience for a broader rapprochement between urban residents and nature, and recognizing the political-ecological context of beekeeping with respect to matters of socioecological justice.}, language = {en} } @article{SprengerMuesseHartkeetal.2021, author = {Sprenger, Philipp P. and M{\"u}sse, Christian and Hartke, Juliane and Feldmeyer, Barbara and Schmitt, Thomas and Gebauer, Gerhard and Menzel, Florian}, title = {Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant-ant association}, series = {Ecological Entomology}, volume = {46}, journal = {Ecological Entomology}, number = {3}, doi = {10.1111/een.13002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228215}, pages = {562 -- 572}, year = {2021}, abstract = {1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein- and carbohydrate-rich baits, but at protein-rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery-dominance trade-off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence.}, language = {en} } @phdthesis{Staus2021, author = {Staus, Madlen}, title = {Glutathione-dependent reprogramming in melanoma}, doi = {10.25972/OPUS-16842}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {These days, treatment of melanoma patients relies on targeted therapy with BRAF/MEK inhibitors and on immunotherapy. About half of all patients initially respond to existing therapies. Nevertheless, the identification of alternative therapies for melanoma patients with intrinsic or acquired resistance is of great importance. In melanoma, antioxidants play an essential role in the maintenance of the redox homeostasis. Therefore, disruption of the redox homeostasis is regarded as highly therapeutically relevant and is the focus of the present work. An adequate supply of cysteine is essential for the production of the most important intracellular antioxidants, such as glutathione. In the present work, it was investigated whether the depletion of cysteine and glutathione is therapeutically useful. Depletion of glutathione in melanoma cells could be achieved by blocking cysteine supply, glutathione synthesis, and NADPH regeneration. As expected, this led to an increased level of reactive oxygen species (ROS). Surprisingly, however, these changes did not impair the proliferation and survival of the melanoma cells. In contrast, glutathione depletion led to cellular reprogramming which was characterized by the induction of mesenchymal genes and the repression of differentiation markers (phenotypic switch). This was accompanied by an increased migration and invasion potential which was favored by the induction of the transcription factor FOSL1. To study in vivo reprogramming, Gclc, the first and rate-limiting enzyme in glutathione synthesis, was knocked out by CRISPR/Cas9 in murine melanoma cells. The cells were devoid of glutathione, but were fully viable and showed a phenotypic switch, the latter only in MITF-expressing B16F1 cells and not in MITF-deficient D4M3A.781 cells. Following subcutaneous injection into immunocompetent C57BL/6 mice, Gclc knockout B16F1 cells grew more aggressively and resulted in an earlier tumor onset than B16F1 control cells. In summary, this work demonstrates that inhibition of cysteine supply and thus, glutathione synthesis leads to cellular reprogramming in melanoma. In this context, melanoma cells show metastatic capabilities, promoting a more aggressive form of the disease.}, subject = {Melanom}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{TrinksReinhardDrobnyetal.2021, author = {Trinks, Nora and Reinhard, Sebastian and Drobny, Matthias and Heilig, Linda and L{\"o}ffler, J{\"u}rgen and Sauer, Markus and Terpitz, Ulrich}, title = {Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02669-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264996}, year = {2021}, abstract = {Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution.}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{UphusLuepkeYuanetal.2021, author = {Uphus, Lars and L{\"u}pke, Marvin and Yuan, Ye and Benjamin, Caryl and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Schwindl, Michael and Uhler, Johannes and Menzel, Annette}, title = {Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248419}, year = {2021}, abstract = {Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: -2.86 days per °C; cameras: -2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.}, language = {en} } @article{VillagomezNuernbergerRequieretal.2021, author = {Villagomez, Gemma N. and N{\"u}rnberger, Fabian and Requier, Fabrice and Schiele, Susanne and Steffan-Dewenter, Ingo}, title = {Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258770}, pages = {7834-7849}, year = {2021}, abstract = {Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.}, language = {en} } @article{VogelChungaSunetal.2021, author = {Vogel, Cassandra and Chunga, Timothy L. and Sun, Xiaoxuan and Poveda, Katja and Steffan-Dewenter, Ingolf}, title = {Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms}, series = {PeerJ}, volume = {9}, journal = {PeerJ}, doi = {10.7717/peerj.10732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231491}, year = {2021}, abstract = {Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.}, language = {en} } @article{VogelBusslerFinnbergetal.2021, author = {Vogel, Sebastian and Bussler, Heinz and Finnberg, Sven and M{\"u}ller, J{\"o}rg and Stengel, Elisa and Thorn, Simon}, title = {Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218401}, pages = {132 -- 143}, year = {2021}, abstract = {Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch-bundles of 42 tree species, representing tree species native and non-native to Europe, under sun-exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha-, beta-, and gamma-diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha- and gamma-diversity found in Quercus petraea. Red-listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non-native tree species as well as sun-exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non-native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red-listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species.}, language = {en} } @article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} }