@article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{UphusLuepkeYuanetal.2021, author = {Uphus, Lars and L{\"u}pke, Marvin and Yuan, Ye and Benjamin, Caryl and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Schwindl, Michael and Uhler, Johannes and Menzel, Annette}, title = {Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248419}, year = {2021}, abstract = {Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: -2.86 days per °C; cameras: -2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.}, language = {en} } @article{VillagomezNuernbergerRequieretal.2021, author = {Villagomez, Gemma N. and N{\"u}rnberger, Fabian and Requier, Fabrice and Schiele, Susanne and Steffan-Dewenter, Ingo}, title = {Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258770}, pages = {7834-7849}, year = {2021}, abstract = {Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.}, language = {en} } @article{VogelChungaSunetal.2021, author = {Vogel, Cassandra and Chunga, Timothy L. and Sun, Xiaoxuan and Poveda, Katja and Steffan-Dewenter, Ingolf}, title = {Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms}, series = {PeerJ}, volume = {9}, journal = {PeerJ}, doi = {10.7717/peerj.10732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231491}, year = {2021}, abstract = {Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.}, language = {en} } @article{VogelBusslerFinnbergetal.2021, author = {Vogel, Sebastian and Bussler, Heinz and Finnberg, Sven and M{\"u}ller, J{\"o}rg and Stengel, Elisa and Thorn, Simon}, title = {Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218401}, pages = {132 -- 143}, year = {2021}, abstract = {Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch-bundles of 42 tree species, representing tree species native and non-native to Europe, under sun-exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha-, beta-, and gamma-diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha- and gamma-diversity found in Quercus petraea. Red-listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non-native tree species as well as sun-exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non-native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red-listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species.}, language = {en} } @article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} } @phdthesis{Vollmuth2021, author = {Vollmuth, Nadine}, title = {Role of the proto-oncogene c-Myc in the development of Chlamydia trachomatis}, doi = {10.25972/OPUS-20365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chlamydia trachomatis, an obligate intracellular human pathogen, is the world's leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.}, language = {en} } @article{WagnerSlaghuisGoebeletal.2021, author = {Wagner, Martin and Slaghuis, J{\"o}rg and G{\"o}bel, Werner and V{\´a}zquez-Boland, Jos{\´e} Antonio and Rychli, Kathrin and Schmitz-Esser, Stephan}, title = {Virulence pattern analysis of three Listeria monocytogenes lineage I epidemic strains with distinct outbreak histories}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {8}, issn = {2076-2607}, doi = {10.3390/microorganisms9081745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245093}, year = {2021}, abstract = {Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs.}, language = {en} } @article{WalterDegenPfeifferetal.2021, author = {Walter, Thomas and Degen, Jacqueline and Pfeiffer, Keram and St{\"o}ckl, Anna and Montenegro, Sergio and Degen, Tobias}, title = {A new innovative real-time tracking method for flying insects applicable under natural conditions}, series = {BMC Zoology}, volume = {6}, journal = {BMC Zoology}, doi = {10.1186/s40850-021-00097-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265716}, year = {2021}, abstract = {Background Sixty percent of all species are insects, yet despite global efforts to monitor animal movement patterns, insects are continuously underrepresented. This striking difference between species richness and the number of species monitored is not due to a lack of interest but rather to the lack of technical solutions. Often the accuracy and speed of established tracking methods is not high enough to record behavior and react to it experimentally in real-time, which applies in particular to small flying animals. Results Our new method of real-time tracking relates to frequencies of solar radiation which are almost completely absorbed by traveling through the atmosphere. For tracking, photoluminescent tags with a peak emission (1400 nm), which lays in such a region of strong absorption through the atmosphere, were attached to the animals. The photoluminescent properties of passivated lead sulphide quantum dots were responsible for the emission of light by the tags and provide a superb signal-to noise ratio. We developed prototype markers with a weight of 12.5 mg and a diameter of 5 mm. Furthermore, we developed a short wave infrared detection system which can record and determine the position of an animal in a heterogeneous environment with a delay smaller than 10 ms. With this method we were able to track tagged bumblebees as well as hawk moths in a flight arena that was placed outside on a natural meadow. Conclusion Our new method eliminates the necessity of a constant or predictable environment for many experimental setups. Furthermore, we postulate that the developed matrix-detector mounted to a multicopter will enable tracking of small flying insects, over medium range distances (>1000m) in the near future because: a) the matrix-detector equipped with an 70 mm interchangeable lens weighs less than 380 g, b) it evaluates the position of an animal in real-time and c) it can directly control and communicate with electronic devices.}, language = {en} } @article{WelterWagnerFurtwaengleretal.2021, author = {Welter, Nils and Wagner, Angelo and Furtw{\"a}ngler, Rhoikos and Melchior, Patrick and Kager, Leo and Vokuhl, Christian and Schenk, Jens-Peter and Meier, Clemens Magnus and Siemer, Stefan and Gessler, Manfred and Graf, Norbert}, title = {Correction: Welter et al. Characteristics of nephroblastoma/nephroblastomatosis in children with a clinically reported underlying malformation or cancer predisposition syndrome. Cancers 2021, 13, 5016}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {22}, issn = {2072-6694}, doi = {10.3390/cancers13225743}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250135}, year = {2021}, abstract = {In the original article [1] there was a mistake in Table 2 as published. Table 2 contains wrong percentages in lines Bilateral disease and Patients with CPS or GU. For this reason the table should be replaced with the correct one as shown below.}, language = {en} } @article{WelterWagnerFurtwaengleretal.2021, author = {Welter, Nils and Wagner, Angelo and Furtw{\"a}ngler, Rhoikos and Melchior, Patrick and Kager, Leo and Vokuhl, Christian and Schenk, Jens-Peter and Meier, Clemens Magnus and Siemer, Stefan and Gessler, Manfred and Graf, Norbert}, title = {Characteristics of nephroblastoma/nephroblastomatosis in children with a clinically reported underlying malformation or cancer predisposition syndrome}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers13195016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248434}, year = {2021}, abstract = {(1) Background: about 10\% of Wilms Tumor (WT) patients have a malformation or cancer predisposition syndrome (CPS) with causative germline genetic or epigenetic variants. Knowledge on CPS is essential for genetic counselling. (2) Methods: this retrospective analysis focused on 2927 consecutive patients with WTs registered between 1989 and 2017 in the SIOP/GPOH studies. (3) Results: Genitourinary malformations (GU, N = 66, 2.3\%), Beckwith-Wiedemann spectrum (BWS, N = 32, 1.1\%), isolated hemihypertrophy (IHH, N = 29, 1.0\%), Denys-Drash syndrome (DDS, N = 24, 0.8\%) and WAGR syndrome (N = 20, 0.7\%) were reported most frequently. Compared to others, these patients were younger at WT diagnosis (median age 24.5 months vs. 39.0 months), had smaller tumors (349.4 mL vs. 487.5 mL), less often metastasis (8.2\% vs. 18\%), but more often nephroblastomatosis (12.9\% vs. 1.9\%). WT with IHH was associated with blastemal WT and DDS with stromal subtype. Bilateral WTs were common in WAGR (30\%), DDS (29\%) and BWS (31\%). Chemotherapy induced reduction in tumor volume was poor in DDS (0.4\% increase) and favorable in BWS (86.9\% reduction). The event-free survival (EFS) of patients with BWS was significantly (p = 0.002) worse than in others. (4) Conclusions: CPS should be considered in WTs with specific clinical features resulting in referral to a geneticist. Their outcome was not always favorable.}, language = {en} } @article{WohlwendCravenWeigeltetal.2021, author = {Wohlwend, Michael R. and Craven, Dylan and Weigelt, Patrick and Seebens, Hanno and Winter, Marten and Kreft, Holger and Zurell, Damaris and Sarmento Cabral, Juliano and Essl, Franz and van Kleunen, Mark and Pergl, Jan and Pyšek, Petr and Knight, Tiffany M.}, title = {Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific}, series = {Diversity and Distributions}, volume = {27}, journal = {Diversity and Distributions}, number = {6}, doi = {10.1111/ddi.13260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239925}, pages = {1120 -- 1133}, year = {2021}, abstract = {Aim The Pacific exhibits an exceptional number of naturalized plant species, but the drivers of this high diversity and the associated compositional patterns remain largely unknown. Here, we aim to (a) improve our understanding of introduction and establishment processes and (b) evaluate whether this information is sufficient to create scientific conservation tools, such as watchlists. Location Islands in the Pacific Ocean, excluding larger islands such as New Zealand, Japan, the Philippines and Indonesia. Methods We combined information from the most up-to-date data sources to quantify naturalized plant species richness and turnover across island groups and investigate the effects of anthropogenic, biogeographic and climate drivers on these patterns. In total, we found 2,672 naturalized plant species across 481 islands and 50 island groups, with a total of 11,074 records. Results Most naturalized species were restricted to few island groups, and most island groups have a low number of naturalized species. Island groups with few naturalized species were characterized by a set of widespread naturalized species. Several plant families that contributed many naturalized species globally also did so in the Pacific, particularly Fabaceae and Poaceae. However, many families were significantly over- or under-represented in the Pacific naturalized flora compared to other regions of the world. Naturalized species richness increased primarily with increased human activity and island altitude/area, whereas similarity between island groups in temperature along with richness differences was most important for beta diversity. Main conclusions The distribution and richness of naturalized species can be explained by a small set of drivers. The Pacific region contains many naturalized plant species also naturalized in other regions in the world, but our results highlight key differences such as a stronger role of anthropogenic drivers in shaping diversity patterns. Our results establish a basis for predicting and preventing future naturalizations in a threatened biodiversity hotspot.}, language = {en} } @article{Wolf2021, author = {Wolf, Matthias}, title = {How to teach about what is a species}, series = {Biology}, volume = {10}, journal = {Biology}, number = {6}, issn = {2079-7737}, doi = {10.3390/biology10060523}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241052}, year = {2021}, abstract = {To ask students what a species is always has something rhetorical about it. Too quickly comes the rote answer, often learned by heart without ever thinking about it: "A species is a reproductive community of populations (reproductively isolated from others), which occupies a specific niche in nature" (Mayr 1982). However, do two people look alike because they are twins or are they twins because they look alike? "Two organisms do not belong to the same species because they mate and reproduce, but they only are able to do so because they belong to the same species" (Mahner and Bunge 1997). Unfortunately, most biology (pre-university) teachers have no opinion on whether species are real or conceptual, simply because they have never been taught the question themselves, but rather one answer they still pass on to their students today, learned by heart without ever thinking about it. Species are either real or conceptual and, in my opinion, it is this "or" that we should teach about. Only then can we discuss those fundamental questions such as who or what is selected, who or what evolves and, finally, what is biodiversity and phylogenetics all about? Individuals related to each other by the tree of life.}, language = {en} } @article{YeKeicherGentschevetal.2021, author = {Ye, Mingyu and Keicher, Markus and Gentschev, Ivaylo and Szalay, Aladar A.}, title = {Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {8}, issn = {2227-9059}, doi = {10.3390/biomedicines9081032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245104}, year = {2021}, abstract = {Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer.}, language = {en} } @article{YeWilhelmGentschevetal.2021, author = {Ye, Mingyu and Wilhelm, Martina and Gentschev, Ivaylo and Szalay, Alad{\´a}r}, title = {A modified limiting dilution method for monoclonal stable cell line selection using a real-time fluorescence imaging system: A practical workflow and advanced applications}, series = {Methods and Protocols}, volume = {4}, journal = {Methods and Protocols}, number = {1}, doi = {10.3390/mps4010016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228896}, year = {2021}, abstract = {Stable cell lines are widely used in laboratory research and pharmaceutical industry. They are mainly applied in recombinant protein and antibody productions, gene function studies, drug screens, toxicity assessments, and for cancer therapy investigation. There are two types of cell lines, polyclonal and monoclonal origin, that differ regarding their homogeneity and heterogeneity. Generating a high-quality stable cell line, which can grow continuously and carry a stable genetic modification without alteration is very important for most studies, because polyclonal cell lines of multicellular origin can be highly variable and unstable and lead to inconclusive experimental results. The most commonly used technologies of single cell originate monoclonal stable cell isolation in laboratory are fluorescence-activated cell sorting (FACS) sorting and limiting dilution cloning. Here, we describe a modified limiting dilution method of monoclonal stable cell line selection using the real-time fluorescence imaging system IncuCyte\(^®\)S3.}, language = {en} } @article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @phdthesis{Zachary2021, author = {Zachary, Marie}, title = {Functional characterization of small non-coding RNAs of \(Neisseria\) \(gonorrhoeae\)}, doi = {10.25972/OPUS-24582}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245826}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {During infection, bacteria need to adapt to a changing environment and have to endure various stress conditions. Small non-coding RNAs are considered as important regulators of bacterial gene expression and so allow quick adaptations by altering expression of specific target genes. Regulation of gene expression in the human-restricted pathogen Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhoea, is only poorly understood. The present study aims a better understanding of gene regulation in N. gonorrhoeae by studying small non-coding RNAs. The discovery of antisense RNAs for all opa genes led to the hypothesis of asRNA-mediated degradation of out-of-frame opa transcripts. Analysis of asRNA expression revealed a very low abundance of the transcripts and inclusion of another phase-variable gene in the study indicates that the asRNAs are not involved in degradation of out-of-frame transcripts. This doctoral thesis focuses on the analysis of trans-acting sRNAs. The sibling sRNAs NgncR_162 and NgncR_163 were discovered as post-transcriptional regulators altering expression of genes involved in metabolic processes, amino acid uptake and transcriptional regulation. A more detailed analysis by in silico and transcriptomic approaches showed that the sRNAs regulate a broad variety of genes coding for proteins of central metabolism, amino acid biosynthesis and degradation and several transport processes. Expression levels of the sibling sRNAs depend on the growth phase of the bacteria and on the growth medium. This indicates that NgncR_162 and NgncR_163 are involved in the adaptation of the gonococcal metabolism to specific growth conditions. This work further initiates characterisation of the sRNA NgncR_237. An in silico analysis showed details on sequence conservation and a possible secondary structure. A combination of in silico target prediction and differential RNA sequencing resulted in the identification of several target genes involved in type IV pilus biogenesis and DNA recombination. However, it was not successful to find induction conditions for sRNA expression. Interestingly, a possible sibling sRNA could be identified that shares the target interaction sequence with NgncR_237 and could therefore target the same mRNAs. In conclusion, this thesis provides further insights in gene regulation by non-coding RNAs in N. gonorrhoeae by analysing two pairs of sibling sRNAs modulating bacterial metabolism or possibly type IV pilus biogenesis.}, subject = {Neisseria gonorrhoeae}, language = {en} } @phdthesis{Zwettler2021, author = {Zwettler, Fabian Ulrich}, title = {Expansionsmikroskopie kombiniert mit hochaufl{\"o}sender Fluoreszenzmikroskopie}, doi = {10.25972/OPUS-21236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fluorescence microscopy is a form of light microscopy that has developed during the 20th century and is nowadays a standard tool in Molecular and Cell biology for studying the structure and function of biological molecules. High-resolution fluorescence microscopy techniques, such as dSTORM (direct Stochastic Optical Reconstruction Microscopy) allow the visualization of cellular structures at the nanometre scale (10-9 m). This has already made it possible to decipher the composition and function of various biopolymers, such as proteins, lipids and nucleic acids, up to the three-dimensional (3D) structure of entire organelles. In practice, however, it has been shown that these imaging methods and their further developments still face great challenges in order to achieve an effective resolution below ∼ 10 nm. This is mainly due to the nature of labelling biomolecules. For the detection of molecular structures, immunostaining is often performed as a standard method. Antibodies to which fluorescent molecules are coupled, recognize and bind specifcally and with high affnity to the molecular section of the target structure, also called epitope or antigen. The fluorescent molecules serve as reporter molecules which are imaged with the use of a fluorescence microscope. However, the size of these labels with a length of about 10-15 nm in the case of immunoglobulin G (IgG) antibodies, cause a detection of the fluorescent molecules shifted to the real position of the studied antigen. In dense regions where epitopes are located close to each other, steric hindrance between antibodies can also occur and leads to an insuffcient label density. Together with the shifted detection of fluorescent molecules, these factors can limit the achievable resolution of a microscopy technique. Expansion microscopy (ExM) is a recently developed technique that achieves a resolution improvement by physical expansion of an investigated object. Therefore, biological samples such as cultured cells, tissue sections, whole organs or isolated organelles are chemically anchored into a swellable polymer. By absorbing water, this so-called superabsorber increases its own volume and pulls the covalently bound biomolecules isotropically apart. Routinely, this method achieves a magnifcation of the sample by about four times its volume. But protocol variants have already been developed that result in higher expansion factors of up to 50-fold. Since the ExM technique includes in the frst instance only the sample treatment for anchoring and magnifcation of the sample, it can be combined with various standard methods of fluorescence microscopy. In theory, the resolution of the used imaging technique improves linearly with the expansion factor of the ExM treated sample. However, an insuffcient label density and the size of the antibodies can here again impair the effective achievable resolution. The combination of ExM with high-resolution fluorescence microscopy methods represents a promising strategy to increase the resolution of light microscopy. In this thesis, I will present several ExM variants I developed which show the combination of ExM with confocal microscopy, SIM (Structured Illumination Microscopy), STED (STimulated Emission Depletion) and dSTORM. I optimized existing ExM protocols and developed different expansion strategies, which allow the combination with the respective imaging technique. Thereby, I gained new structural insights of isolated centrioles from the green algae Chlamydomonas reinhardtii by combining ExM with STED and confocal microscopy. In another project, I combined 3D-SIM imaging with ExM and investigated the molecular structure of the so-called synaptonemal complex. This structure is formed during meiosis in eukaryotic cells and contributes to the exchange of genetic material between homologous chromosomes. Especially in combination with dSTORM, the ExM method showed its high potential to overcome the limitations of modern fluorescence microscopy techniques. In this project, I expanded microtubules in mammalian cells, a polymer of the cytoskeleton as well as isolated centrioles from C. reinhardtii. By labelling after expansion of the samples, I was able to signifcantly reduce the linkage error of the label and achieve an improved label density. In future, these advantages together with the single molecule sensitivity and high resolution obtained by the dSTORM method could pave the way for achieving molecular resolution in fluorescence microscopy}, subject = {Fluoreszenzmikroskopie}, language = {en} }