@article{GilbertHeintelJakubietzetal.2018, author = {Gilbert, F. and Heintel, T. M. and Jakubietz, M. G. and K{\"o}stler, H. and Sebald, C. and Meffert, R. H. and Weng, A. M.}, title = {Quantitative MRI comparison of multifidus muscle degeneration in thoracolumbar fractures treated with open and minimally invasive approach}, series = {BMC Musculoskeletal Disorders}, volume = {19}, journal = {BMC Musculoskeletal Disorders}, number = {75}, doi = {10.1186/s12891-018-2001-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175742}, year = {2018}, abstract = {Background: Minimally invasive pedicle screw fixation has less approach-related morbidity than open screw placement and is allegedly less traumatizing on paravertebral muscles, as there is no requirement to mobilize and retract the adjacent muscle portion. The approach-related long-term effects to the morphology of the paravertebral muscles are unknown. The purpose of this study was to compare the long-term amount of fatty degeneration of the multifidus muscle in patients treated with a classical open or a minimally invasive approach. Methods: Fourteen Patients meeting inclusion criteria were selected. In all patients a singular fracture of the thoracolumbar spine with a two-level posterior instrumentation was treated, either using an open approach or a minimally invasive approach. All patients underwent quantitative MRI spectroscopy for quantification of the fatty degeneration in the multifidus muscle as a long-term proof for muscle loss after minimum 4-year follow-up. Clinical outcome was assessed using Oswestry Low Back Pain Disability Questionnaire, SF-36 and VA-scale for pain. Results: The minimally invasive approach group failed to show less muscle degeneration in comparison to the open group. Total amount of fatty degeneration was 14.22\% in the MIS group and 12.60\% in the open group (p = 0.64). In accordance to MRI quantitative results there was no difference in the clinical outcome after a mean follow up of 5.9 years (±1.8). Conclusion: As short-term advantages of minimal invasive screw placement have been widely demonstrated, no advantage of the MIS, displaying a significant difference in the amount of fatty degeneration and resulting in a better clinical outcome could be found. Besides the well-known short-term advantage of minimally invasive pedicle screw placement, a long-term advantage, such as less muscle degeneration and thus superior clinical results, compared to the open approach could not be shown.}, language = {en} } @article{StrahlGerlichAlpersetal.2018, author = {Strahl, Andr{\´e} and Gerlich, Christian and Alpers, Georg W. and Ehrmann, Katja and Gehrke, J{\"o}rg and M{\"u}ller-Garnn, Annette and Vogel, Heiner}, title = {Development and evaluation of a standardized peer-training in the context of peer review for quality assurance in work capacity evaluation}, series = {BMC Medical Education}, volume = {18}, journal = {BMC Medical Education}, number = {135}, doi = {10.1186/s12909-018-1233-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175738}, year = {2018}, abstract = {Background: The German quality assurance programme for evaluating work capacity is based on peer review that evaluates the quality of medical experts' reports. Low reliability is thought to be due to systematic differences among peers. For this purpose, we developed a curriculum for a standardized peer-training (SPT). This study investigates, whether the SPT increases the inter-rater reliability of social medical physicians participating in a cross-institutional peer review. Methods: Forty physicians from 16 regional German Pension Insurances were subjected to SPT. The three-day training course consist of nine educational objectives recorded in a training manual. The SPT is split into a basic module providing basic information about the peer review and an advanced module for small groups of up to 12 peers training peer review using medical reports. Feasibility was tested by assessing selection, comprehensibility and subjective use of contents delivered, the trainers' delivery and design of training materials. The effectiveness of SPT was determined by evaluating peer concordance using three anonymised medical reports assessed by each peer. Percentage agreement and Fleiss' kappa (κ\(_m\)) were calculated. Concordance was compared with review results from a previous unstructured, non-standardized peer-training programme (control condition) performed by 19 peers from 12 German Pension Insurances departments. The control condition focused exclusively on the application of peer review in small groups. No specifically training materials, methods and trainer instructions were used. Results: Peer-training was shown to be feasible. The level of subjective confidence in handling the peer review instrument varied between 70 and 90\%. Average percentage agreement for the main outcome criterion was 60.2\%, resulting in a κ\(_m\) of 0.39. By comparison, the average percentage concordance was 40.2\% and the κ\(_m\) was 0.12 for the control condition. Conclusion: Concordance with the main criterion was relevant but not significant (p = 0.2) higher for SPT than for the control condition. Fleiss' kappa coefficient showed that peer concordance was higher for SPT than randomly expected. Nevertheless, a score of 0.39 for the main criterion indicated only fair inter-rater reliability, considerably lower than the conventional standard of 0.7 for adequate reliability.}, language = {en} } @article{UsmanReimannLiedletal.2018, author = {Usman, Muhammad and Reimann, Thomas and Liedl, Rudolf and Abbas, Azhar and Conrad, Christopher and Saleem, Shoaib}, title = {Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: test and application of different approaches}, series = {ISPRS International Journal of Geo-Information}, volume = {7}, journal = {ISPRS International Journal of Geo-Information}, number = {1}, doi = {10.3390/ijgi7010022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175721}, pages = {22}, year = {2018}, abstract = {The use of inverse methods allow efficient model calibration. This study employs PEST to calibrate a large catchment scale transient flow model. Results are demonstrated by comparing manually calibrated approaches with the automated approach. An advanced Tikhonov regularization algorithm was employed for carrying out the automated pilot point (PP) method. The results indicate that automated PP is more flexible and robust as compared to other approaches. Different statistical indicators show that this method yields reliable calibration as values of coefficient of determination (R-2) range from 0.98 to 0.99, Nash Sutcliffe efficiency (ME) range from 0.964 to 0.976, and root mean square errors (RMSE) range from 1.68 m to 1.23 m, for manual and automated approaches, respectively. Validation results of automated PP show ME as 0.969 and RMSE as 1.31 m. The results of output sensitivity suggest that hydraulic conductivity is a more influential parameter. Considering the limitations of the current study, it is recommended to perform global sensitivity and linear uncertainty analysis for the better estimation of the modelling results.}, language = {en} } @article{EmserJohnstonSteeleetal.2018, author = {Emser, Theresa S. and Johnston, Blair A. and Steele, J. Douglas and Kooij, Sandra and Thorell, Lisa and Christiansen, Hanna}, title = {Assessing ADHD symptoms in children and adults: evaluating the role of objective measures}, series = {Behavioral and Brain Functions}, volume = {14}, journal = {Behavioral and Brain Functions}, number = {11}, doi = {10.1186/s12993-018-0143-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175717}, year = {2018}, abstract = {Background: Diagnostic guidelines recommend using a variety of methods to assess and diagnose ADHD. Applying subjective measures always incorporates risks such as informant biases or large differences between ratings obtained from diverse sources. Furthermore, it has been demonstrated that ratings and tests seem to assess somewhat different constructs. The use of objective measures might thus yield valuable information for diagnosing ADHD. This study aims at evaluating the role of objective measures when trying to distinguish between individuals with ADHD and controls. Our sample consisted of children (n = 60) and adults (n = 76) diagnosed with ADHD and matched controls who completed self- and observer ratings as well as objective tasks. Diagnosis was primarily based on clinical interviews. A popular pattern recognition approach, support vector machines, was used to predict the diagnosis. Results: We observed relatively high accuracy of 79\% (adults) and 78\% (children) applying solely objective measures. Predicting an ADHD diagnosis using both subjective and objective measures exceeded the accuracy of objective measures for both adults (89.5\%) and children (86.7\%), with the subjective variables proving to be the most relevant. Conclusions: We argue that objective measures are more robust against rater bias and errors inherent in subjective measures and may be more replicable. Considering the high accuracy of objective measures only, we found in our study, we think that they should be incorporated in diagnostic procedures for assessing ADHD.}, language = {en} } @article{LichtensteinGruebelSpaethe2018, author = {Lichtenstein, Leonie and Gr{\"u}bel, Kornelia and Spaethe, Johannes}, title = {Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera}, series = {BMC Developmental Biology}, volume = {18}, journal = {BMC Developmental Biology}, number = {1}, doi = {10.1186/s12861-018-0162-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175665}, year = {2018}, abstract = {Background: The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees. Results: qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock. Conclusions: Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.}, language = {en} } @article{MorbachBellaviaStoerketal.2018, author = {Morbach, Caroline and Bellavia, Diego and St{\"o}rk, Stefan and Sugeng, Lissa}, title = {Systolic characteristics and dynamic changes of the mitral valve in different grades of ischemic mitral regurgitation - insights from 3D transesophageal echocardiography}, series = {BMC Cardiovascular Disorders}, volume = {18}, journal = {BMC Cardiovascular Disorders}, number = {93}, doi = {10.1186/s12872-018-0819-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175642}, year = {2018}, abstract = {Background: Mitral regurgitation in ischemic heart disease (IMR) is a strong predictor of outcome but until now, pathophysiology is not sufficiently understood and treatment is not satisfying. We aimed to systematically evaluate structural and functional mitral valve leaflet and annular characteristics in patients with IMR to determine the differences in geometric and dynamic changes of the MV between significant and mild IMR. Methods: Thirty-seven patients with IMR (18 mild (m)MR, 19 significant (moderate+severe) (s)MR) and 33 controls underwent TEE. 3D volumes were analyzed using 3D feature-tracking software. Results: All IMR patients showed a loss of mitral annular motility and non-planarity, whereas mitral annulus dilation and leaflet enlargement occurred in sMR only. Active-posterior-leaflet-area decreased in early systole in all three groups accompanied by an increase in active-anterior-leaflet-area in early systole in controls and mMR but only in late systole in sMR. Conclusions: In addition to a significant enlargement and loss in motility of the MV annulus, patients with significant IMR showed a spatio-temporal alteration of the mitral valve coaptation line due to a delayed increase in active-anterior-leaflet-area. This abnormality is likely to contribute to IMR severity and is worth the evaluation of becoming a parameter for clinical decision-making. Further, addressing the leaflets aiming to increase the active leaflet-area is a promising therapeutic approach for significant IMR. Additional studies with a larger sample size and post-operative assessment are warranted to further validate our findings and help understand the dynamics of the mitral valve.}, language = {en} } @article{VendelovaAshourBlanketal.2018, author = {Vendelova, Emilia and Ashour, Diyaaeldin and Blank, Patrick and Erhard, Florian and Saliba, Antoine-Emmanuel and Kalinke, Ulrich and Lutz, Manfred B.}, title = {Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {333}, doi = {10.3389/fimmu.2018.00333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175636}, year = {2018}, abstract = {Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.}, language = {en} } @article{BartmannJanakiRamanFloeteretal.2018, author = {Bartmann, Catharina and Janaki Raman, Sudha R. and Fl{\"o}ter, Jessica and Schulze, Almut and Bahlke, Katrin and Willingstorfer, Jana and Strunz, Maria and W{\"o}ckel, Achim and Klement, Rainer J. and Kapp, Michaela and Djuzenova, Cholpon S. and Otto, Christoph and K{\"a}mmerer, Ulrike}, title = {Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation}, series = {Cancer \& Metabolism}, volume = {6}, journal = {Cancer \& Metabolism}, number = {8}, doi = {10.1186/s40170-018-0180-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175607}, year = {2018}, abstract = {Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2-6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5\% oxygen) or normoxia (21\% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro.}, language = {en} } @article{SchumannEberleinMuhtadietal.2018, author = {Schumann, Sarah and Eberlein, Uta and Muhtadi, Razan and Lassmann, Michael and Scherthan, Harry}, title = {DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {2286}, doi = {10.1038/s41598-018-20364-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175596}, year = {2018}, abstract = {Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7\%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.}, language = {en} } @article{SoaresMachadoTranGiaSchloegletal.2018, author = {Soares Machado, J. and Tran-Gia, J. and Schl{\"o}gl, S. and Buck, A. K. and Lassmann, M.}, title = {Biokinetics, dosimetry, and radiation risk in infants after \(^{99m}\)Tc-MAG3 scans}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {10}, doi = {10.1186/s13550-017-0356-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175582}, year = {2018}, abstract = {Background: Renal scans are among the most frequent exams performed on infants and toddlers. Due to the young age, this patient group can be classified as a high-risk group with a higher probability for developing stochastic radiation effects compared to adults. As there are only limited data on biokinetics and dosimetry in this patient group, the aim of this study was to reassess the dosimetry and the associated radiation risk for infants undergoing \(^{99m}\)Tc-MAG3 renal scans based on a retrospective analysis of existing patient data. Consecutive data were collected from 20 patients younger than 20 months (14 males; 6 females) with normal renal function undergoing \(^{99m}\)Tc-MAG3 scans. To estimate the patient-specific organ activity, a retrospective calibration was performed based on a set of two 3D-printed infant kidneys filled with known activities. Both phantoms were scanned at different positions along the anteroposterior axis inside a water phantom, providing depth- and size-dependent attenuation correction factors for planar imaging. Time-activity curves were determined by drawing kidney, bladder, and whole-body regions-of-interest for each patient, and subsequently applying the calibration factor for conversion of counts to activity. Patient-specific time-integrated activity coefficients were obtained by integrating the organ-specific time-activity curves. Absorbed and effective dose coefficients for each patient were assessed with OLINDA/EXM for the provided newborn and 1-year-old model. The risk estimation was performed individually for each of the 20 patients with the NCI Radiation Risk Assessment Tool. Results: The mean age of the patients was 7.0 ± 4.5 months, with a weight between 5 and 12 kg and a body size between 60 and 89 cm. The injected activities ranged from 12 to 24 MBq of \(^{99m}\)Tc-MAG3. The patients' organ-specific mean absorbed dose coefficients were 0.04 ± 0.03 mGy/MBq for the kidneys and 0.27 ± 0.24 mGy/MBq for the bladder. The mean effective dose coefficient was 0.02 ± 0.02 mSv/MBq. Based on the dosimetry results, an evaluation of the excess lifetime risk for the development of radiation-induced cancer showed that the group of newborns has a risk of 16.8 per 100,000 persons, which is about 12\% higher in comparison with the 1-year-old group with 14.7 per 100,000 persons (all values are given as mean plus/minus one standard deviation except otherwise specified). Conclusion: In this study, we retrospectively derived new data on biokinetics and dosimetry for infants with normal kidney function after undergoing renal scans with \(^{99m}\)Tc-MAG3. In addition, we analyzed the associated age- and gender-specific excess lifetime risk due to ionizing radiation. The radiation-associated stochastic risk increases with the organ doses, taking age- and gender-specific influences into account. Overall, the lifetime radiation risk associated with the \(^{99m}\)Tc-MAG3 scans is very low in comparison to the general population risk for developing cancer.}, language = {en} } @article{BoelchWeissenbergerSpohnetal.2018, author = {Boelch, Sebastian Philipp and Weissenberger, Manuel and Spohn, Frederik and Rudert, Maximilian and Luedemann, Martin}, title = {Insufficient sensitivity of joint aspiration during the two-stage exchange of the hip with spacers}, series = {Journal of Orthopedic Surgery and Research}, volume = {13}, journal = {Journal of Orthopedic Surgery and Research}, number = {7}, doi = {10.1186/s13018-017-0703-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175576}, year = {2018}, abstract = {Background: Evaluation of infection persistence during the two-stage exchange of the hip is challenging. Joint aspiration before reconstruction is supposed to rule out infection persistence. Sensitivity and specificity of synovial fluid culture and synovial leucocyte count for detecting infection persistence during the two-stage exchange of the hip were evaluated. Methods: Ninety-two aspirations before planned joint reconstruction during the two-stage exchange with spacers of the hip were retrospectively analyzed. Results: The sensitivity and specificity of synovial fluid culture was 4.6 and 94.3\%. The sensitivity and specificity of synovial leucocyte count at a cut-off value of 2000 cells/μl was 25.0 and 96.9\%. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were significantly higher before prosthesis removal and reconstruction or spacer exchange (p = 0.00; p = 0.013 and p = 0.039; p = 0.002) in the infection persistence group. Receiver operating characteristic area under the curve values before prosthesis removal and reconstruction or spacer exchange for ESR were lower (0.516 and 0.635) than for CRP (0.720 and 0.671). Conclusions: Synovial fluid culture and leucocyte count cannot rule out infection persistence during the two-stage exchange of the hip.}, language = {en} } @article{RothSteffensVignoles2018, author = {Roth, Jenny and Steffens, Melanie C. and Vignoles, Vivian L.}, title = {Group membership, group change, and intergroup attitudes: a recategorization model based on cognitive consistency principles}, series = {Frontiers in Psychology}, volume = {9}, journal = {Frontiers in Psychology}, number = {479}, doi = {10.3389/fpsyg.2018.00479}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175569}, year = {2018}, abstract = {The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance-congruity and imbalance-dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.}, language = {en} } @article{RosentreterLappasWidderetal.2018, author = {Rosentreter, Andr{\´e} and Lappas, Alexandra and Widder, Randolf Alexander and Alnawaiseh, Maged and Dietlein, Thomas Stefan}, title = {Conjunctival repair after glaucoma drainage device exposure using collagen-glycosaminoglycane matrices}, series = {BMC Ophthalmology}, volume = {18}, journal = {BMC Ophthalmology}, number = {60}, doi = {10.1186/s12886-018-0721-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175534}, year = {2018}, abstract = {Background: To report the results of the repair of conjunctival erosions resulting from glaucoma drainage device surgery using collagen-glycosaminoglycane matrices (CGM). Methods: Case series of 8 patients who underwent revision surgery due to conjunctival defects with exposed tubes through necrosis of the overlying scleral flap and conjunctiva after Baerveldt drainage device surgery. The defects were repaired by lateral displacement of the tube towards the sclera, with a slice of a CGM as a patch, covered by adjacent conjunctiva. Result: Successful, lasting closure (follow-up of 12 to 42 months) of the conjunctival defects was achieved without any side-effects or complications in all eight cases. Conclusions: Erosion of the drainage tube, creating buttonholes in the conjunctiva after implantation of glaucoma drainage devices, is a potentially serious problem. It can be managed successfully using a biodegradable CGM as a patch.}, language = {en} } @article{OezkurMagyarThomasetal.2018, author = {Oezkur, Mehmet and Magyar, Atilla and Thomas, Phillip and Reif, Andreas and St{\"o}rk, Stefan and Heuschmann, Peter U. and Leyh, Rainer G. and Wagner, Martin}, title = {The COMT-polymorphism is not associated with the incidence of acute kidney injury after cardiac surgery - a prospective cohort study}, series = {BMC Nephrology}, volume = {19}, journal = {BMC Nephrology}, number = {34}, doi = {10.1186/s12882-018-0820-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175529}, year = {2018}, abstract = {Background: The Catechol-O-methyltransferase (COMT) represents the key enzyme in catecholamine degradation. Recent studies suggest that the COMT rs4680 polymorphism is associated with the response to endogenous and exogenous catecholamines. There are, however, conflicting data regarding the COMT Met/Met phenotype being associated with an increased risk of acute kidney injury (AKI) after cardiac surgery. The aim of the current study is to prospectively investigate the impact of the COMT rs4680 polymorphism on the incidence of AKI in patients undergoing cardiac surgery. Methods: In this prospective single center cohort study consecutive patients hospitalized for elective cardiac surgery including cardiopulmonary-bypass (CPB) were screened for participation. Demographic clinical data, blood, urine and tissue samples were collected at predefined time points throughout the clinical stay. AKI was defined according to recent recommendations of the Kidney Disease Improving Global Outcome (KDIGO) group. Genetic analysis was performed after patient enrolment was completed. Results: Between April and December 2014, 150 patients were recruited. The COMT genotypes were distributed as follows: Val/Met 48.7\%, Met/Met 29.3\%, Val/Val 21.3\%. No significant differences were found for demography, comorbidities, or operative strategy according to the underlying COMT genotype. AKI occurred in 35 patients (23.5\%) of the total cohort, and no differences were evident between the COMT genotypes (20.5\% Met/Met, 24.7\% Val/Met, 25.0\% Val/Val, p = 0.66). There were also no differences in the post-operative period, including ICU or in-hospital stay. Conclusions: We did not find statistically significant variations in the risk for postoperative AKI, length of ICU or in-hospital stay according to the underlying COMT genotype.}, language = {en} } @article{RufDemerathHebestreitetal.2018, author = {Ruf, Katharina and Demerath, Antonia and Hebestreit, Helge and Kunzmann, Steffen}, title = {Is sweat testing for cystic fibrosis feasible in patients with down syndrome?}, series = {BMC Pulmonary Medicine}, volume = {18}, journal = {BMC Pulmonary Medicine}, number = {8}, doi = {10.1186/s12890-018-0580-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175519}, year = {2018}, abstract = {Background: Recurrent airway infections are common in patients with Down's syndrome (DS). Hence, ruling out Cystic Fibrosis (CF) in these patients is often required. In the past, the value of sweat testing the gold standard to diagnose CF -has been questioned in DS as false positive results have been reported. However, these reports are based on measurements of sweat osmolality or sodium concentrations, not chloride concentrations. This study analyses sweat secretion rate and chloride concentration in sweat samples of patients with DS in comparison to healthy controls. Methods: We assessed sweat samples in 16 patients with DS and 16 healthy controls regarding sweat secretion rate (SSR) and sweat chloride concentration. Results: All measured chloride concentrations were within the normal range. The chloride concentrations were slightly, but not significantly lower in patients with DS (15,54 mmol/l (±4,47)) compared to healthy controls (18,31 mmol/l (±10,12)). While no gender gap in chloride concentration could be found, chloride concentration increased with age in both groups. Insufficient sweat was collected in 2 females with DS (12.5\% of the study group) but not in an individual of the control group. A significant lower sweat secretion rate was found in the DS group (27,6 μl/30 min (± 12,18)) compared to the control group (42,7 μl/30 min (± 21,22)). In a sub-analysis, female patients produced significantly less sweat (20,8 ± 10,6 μl/30 min) than male patients with DS (36,4 ± 7,8 μl/30 min), which accounts for the difference between patients and controls. Furthermore, while the sweating secretion rate increased with age in the control group, it did not do so in the DS group. Once again this was due to female patients with DS, who did not show a significant increase of sweat secretion rate with age. Conclusions: Sweat chloride concentrations were within the normal range in patients with DS and therefore seem to be a reliable tool for testing for CF in these patients. Interestingly, we found a reduced sweat secretion rate in the DS group. Whether the last one has a functional and clinical counterpart, possibly due to a disturbed thermoregulation in DS patients, requires further investigation.}, language = {en} } @article{ChenLotzRoeweretal.2018, author = {Chen, Shasha and Lotz, Christopher and Roewer, Norbert and Broscheit, Jens-Albert}, title = {Comparison of volatile anesthetic-induced preconditioning in cardiac and cerebral system: molecular mechanisms and clinical aspects}, series = {European Journal of Medical Research}, volume = {23}, journal = {European Journal of Medical Research}, number = {10}, doi = {10.1186/s40001-018-0308-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175509}, year = {2018}, abstract = {Volatile anesthetic-induced preconditioning ( APC) has shown to have cardiac and cerebral protective properties in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio- and neuroprotective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focusing on the perioperative use of volatile anesthetics for organ protection are still needed.}, language = {en} } @article{KazuhinoWernerToriumietal.2018, author = {Kazuhino, Koshino and Werner, Rudolf A. and Toriumi, Fuijo and Javadi, Mehrbod S. and Pomper, Martin G. and Solnes, Lilja B. and Verde, Franco and Higuchi, Takahiro and Rowe, Steven P.}, title = {Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images}, series = {Tomography}, volume = {4}, journal = {Tomography}, number = {4}, doi = {10.18383/j.tom.2018.00042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172185}, pages = {159-163}, year = {2018}, abstract = {Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40\%-60\%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45\% and 71\% as real magnetic resonance imaging images (NNRs, 24\%, 40\%, and 44\%). In contradistinction, 44\% and 70\% of the real images were rated as generated images by NRs (NNRs, 10\%, 17\%, and 27\%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications.}, subject = {Magnetresonanztomografie}, language = {en} } @phdthesis{Steck2018, author = {Steck, Daniel}, title = {Lagrange Multiplier Methods for Constrained Optimization and Variational Problems in Banach Spaces}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174444}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis is concerned with a class of general-purpose algorithms for constrained minimization problems, variational inequalities, and quasi-variational inequalities in Banach spaces. A substantial amount of background material from Banach space theory, convex analysis, variational analysis, and optimization theory is presented, including some results which are refinements of those existing in the literature. This basis is used to formulate an augmented Lagrangian algorithm with multiplier safeguarding for the solution of constrained optimization problems in Banach spaces. The method is analyzed in terms of local and global convergence, and many popular problem classes such as nonlinear programming, semidefinite programming, and function space optimization are shown to be included as special cases of the general setting. The algorithmic framework is then extended to variational and quasi-variational inequalities, which include, by extension, Nash and generalized Nash equilibrium problems. For these problem classes, the convergence is analyzed in detail. The thesis then presents a rich collection of application examples for all problem classes, including implementation details and numerical results.}, subject = {Optimierung}, language = {en} } @phdthesis{Ziegenhals2018, author = {Ziegenhals, Thomas}, title = {The role of the miR-26 family in neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For the differentiation of a embryonic stem cells (ESCs) to neuronal cells (NCs) a complex and coordinated gene regulation program is needed. One important control element for neuronal differentiation is the repressor element 1 silencing transcription factor (REST) complex, which represses neuronal gene expression in non-neuronal cells. Crucial effector proteins of the REST complex are small phosphatases such as the CTDSPs (C-terminal domain small phosphatases) that regulate polymerase II activity by dephosphorylating the C-terminal domain of the polymerase, thereby repressing target genes. The stepwise inactivation of REST, including the CTDSPs, leads to the induction of a neuron-specific gene program, which ultimately induces the formation of neurons. The spatio-temporal control of REST and its effector components is therefore a crucial step for neurogenesis. In zebrafish it was shown that the REST-associated CTDSP2 is negatively regulated by the micro RNA (miR) -26b. Interestingly, the miR-26b is encoded in an intron of the primary transcript of CTDSP2. This gives the fundament of an intrinsic regulatory negative feedback loop, which is essential for the proceeding of neurogenesis. This feedback loop is active during neurogenesis, but inactive in non-neuronal cells. The reason for this is that the maturation of the precursor miR (pre-miR) to the mature miR-26 is arrested in non neuronal cells, but not in neurons. As only mature miRs are actively repressing genes, the regulation of miR-26 processing is an essential step in neurogenesis. In this study, the molecular basis of miR-26 processing regulation in the context of neurogenesis was addressed. The mature miR is processed from two larger precursors: First the primary transcript is cleaved by the enzyme DROSHA in the nucleus to form the pre-miR. The pre-miR is exported from the nucleus and processed further through the enzyme DICER to yield the mature miR. The mature miR can regulate gene expression in association with the RNA-induced silencing complex (RISC). Multiple different scenarios in which miR processing was regulated were proposed and experimentally tested. Microinjection studies using Xenopus leavis oocytes showed that slowdown or blockage of the nucleo-cytoplasmic transport are not the reason for delayed pre-miR-26 processing. Moreover, in vitro and in vivo miR-processing assays showed that maturation is most likely regulated through a in trans acting factor, which blocks processing in non neuronal cells. Through RNA affinity chromatographic assays using zebrafish and murine lysates I was able to isolate and identify proteins that interact specifically with pre-miR-26 and could by this influence its biogenesis. Potential candidates are FMRP/FXR1/2, ZNF346 and Eral1, whose functional characterisation in the context of miR-biogenesis could now be addressed. The second part of my thesis was executed in close colaboration with the laboratory of Prof. Albrecht M{\"u}ller. The principal question was addressed how miR-26 influences neuronal gene expression and which genes are primarily affected. This research question could be addressed by using a cell culture model system, which mimics ex vivo the differentiation of ESCs to NCs via neuronal progenitor. For the functional analysis of miR-26 knock out cell lines were generated by the CRISPR/Cas9 technology. miR-26 deficient ESC keep their pluripotent state and are able to develop NPC, but show major impairment in differentiating to NCs. Through RNA deep sequencing the miR-26 induced transcriptome differences could be analysed. On the level of mRNAs it could be shown, that the expression of neuronal gene is downregulated in miR-26 deficient NCs. Interestingly, the deletion of miR-26 leads to selectively decreased levels of miRs, which on one hand regulate the REST complex and on the other hand are under transcriptional control by REST themself. This data and the discovery that induction of miR-26 leads to enrichment of other REST regulating miRs indicates that miR-26 initiates neurogenesis through stepwise inactivation of the REST complex.}, subject = {miRNS}, language = {en} } @article{WernerWeichKircheretal.2018, author = {Werner, Rudolf A. and Weich, Alexander and Kircher, Malte and Solnes, Lilja B. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven and Lapa, Constantin}, title = {The theranostic promise for neuroendocrine tumors in the late 2010s - Where do we stand, where do we go?}, series = {Theranostics}, volume = {8}, journal = {Theranostics}, number = {22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170264}, pages = {6088-6100}, year = {2018}, abstract = {More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Schoetz2018, author = {Sch{\"o}tz, Matthias}, title = {Convergent Star Products and Abstract O*-Algebras}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174355}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Dissertation behandelt ein Problem aus der Deformationsquantisierung: Nachdem man die Quantisierung eines klassischen Systems konstruiert hat, w{\"u}rde man gerne ihre mathematischen Eigenschaften verstehen (sowohl die des klassischen Systems als auch die des Quantensystems). Falls beide Systeme durch *-Algebren {\"u}ber dem K{\"o}rper der komplexen Zahlen beschrieben werden, bedeutet dies dass man die Eigenschaften bestimmter *-Algebren verstehen muss: Welche Darstellungen gibt es? Was sind deren Eigenschaften? Wie k{\"o}nnen die Zust{\"a}nde in diesen Darstellungen beschrieben werden? Wie kann das Spektrum der Observablen beschrieben werden? Um eine hinreichend allgemeine Behandlung dieser Fragen zu erm{\"o}glichen, wird das Konzept von abstrakten O*-Algebren entwickelt. Dies sind im Wesentlichen *-Algebren zusammen mit einem Kegel positiver linearer Funktionale darauf (z.B. die stetigen positiven linearen Funktionale wenn man mit einer *-Algebra startet, die mit einer gutartigen Topologie versehen ist). Im Anschluss daran wird dieser Ansatz dann auf zwei Beispiele aus der Deformationsquantisierung angewandt, die im Detail untersucht werden.}, subject = {Deformationsquantisierung}, language = {en} } @unpublished{HoebartnerSteinmetzgerPalanisamyetal.2018, author = {H{\"o}bartner, Claudia and Steinmetzger, Christian and Palanisamy, Navaneethan and Gore, Kiran R.}, title = {A multicolor large Stokes shift fluorogen-activating RNA aptamer with cationic chromophores}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {https://doi.org/10.1002/chem.201805882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174197}, year = {2018}, abstract = {Large Stokes shift (LSS) fluorescent proteins (FPs) exploit excited state proton transfer pathways to enable fluorescence emission from the phenolate intermediate of their internal 4 hydroxybenzylidene imidazolone (HBI) chromophore. An RNA aptamer named Chili mimics LSS FPs by inducing highly Stokes-shifted emission from several new green and red HBI analogs that are non-fluorescent when free in solution. The ligands are bound by the RNA in their protonated phenol form and feature a cationic aromatic side chain for increased RNA affinity and reduced magnesium dependence. In combination with oxidative functional-ization at the C2 position of the imidazolone, this strategy yielded DMHBO\(^+\), which binds to the Chili aptamer with a low-nanomolar K\(_D\). Because of its highly red-shifted fluorescence emission at 592 nm, the Chili-DMHBO\(^+\) complex is an ideal fluorescence donor for F{\"o}rster resonance energy transfer (FRET) to the rhodamine dye Atto 590 and will therefore find applications in FRET-based analytical RNA systems.}, language = {en} } @phdthesis{Schreck2018, author = {Schreck, Maximilian}, title = {Synthesis and Photophysics of Linear and Star-Shaped Oligomers of Squaraine Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174272}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this thesis, the synthesis and photophysics of a great variety of squaraine dyes are presented. This variety is based on four parent squaraines containing either indolenine or quinoline heterocycles. By a suitable choice of the donor and acceptor unit, the optical properties can already be adapted to the properties desired on the stage of the monomer. To promote a further derivatisation of these dyes, diverse functional groups are attached to the monomers using transition metal-catalysed C-C coupling reactions. However, this has to be preceded by the synthesis of bromine-functionalised derivatives as a direct halogenation of squaraine dyes is not feasible. Therefore, the halogen function is already introduced in precursor molecules giving rise to a molecular building block system containing bromine-, boronic ester-, and alkyne-functionalised monomer units, which pave the way to a plethora of squaraine oligomers and polymers. The indolenine homopolymer pSQB-1 as well as the corresponding small molecular weight oligomers dSQB-1 and tSQB were synthesized applying Ni-mediated Yamamoto and Pd-catalysed Suzuki coupling methodologies, respectively. The motivation for this project relied on the fundamental investigations by V{\"o}lker et al. on pSQB-V. A progressive red-shift of the lowest energy absorption maximum from the dimer to the polymer was observed in CHCl3 compared to the monomer. With increasing number of monomer units, the exciton coupling decreases from the dimer to the polymer. In addition, the shape of the absorption band manifold shows a strong dependence on the solvent, which was also observed by V{\"o}lker et al. J-type aggregate behavior is found in chlorinated solvents such as CHCl3 and DCM, whereas H-type aggregates are formed in acetone. Temperature-dependent absorption studies in PhCN reveals a reversible equilibrium of diverse polymer conformers, which manifests itself in a gradual change from H-aggregate behavior to a mixture with a more pronounced J-aggregate behavior upon raising the temperature. It isassumed that both characteristic aggregate bands correlate in borderline cases with two polymer structures which can be assigned to a zig-zag and a helical structure. As no experimental evidence for these structures could hitherto be provided by NMR, TD-DFT computations on oligomers (22-mers) can reproduce very closely the characteristic features of the spectra for the two conformational isomers. The subsequent chapters are motivated by the goal to influence the optical properties through a control of the superstructure and thus of the intramolecular aggregate formation. On the one hand, bulky groups are implemented in the 3-position of the indolenine scaffold to provoke steric repulsion and thus favoring J-aggregate behavior at the expense of helical arrangements. The resulting homopolymer pDiPhSQB bearing two phenyl groups per indolenine exhibits J-type aggregate behavior with red-shifted absorption maxima in all considered solvents which is explained to be caused by the formation of elongated zig-zag structures. Furthermore, single-crystal X-ray analysis of monomer DiPhSQB-2-Br2 reveals a torsion of the indolenine moieties as a consequence of steric congestion. The twist of the molecular geometry and the resulting loss of planarity leads to a serious deterioration of the fluorescence properties, however a significant bathochromic shift of ca. 1 200 cm-1 of the lowest absorption band was observed compared to parent SQB, which is even larger than the shift for dSQB-1 (ca. 1 000 cm-1). On the other hand, a partial stiffening of the polymer backbone is attempted to create a bias for elongated polymer chains. In this respect, the synthetic approach is to replace every second biarylaxis with the rigid transoid benzodipyrrolenine unit. Despite a rather low average degree of polymerization < 10, exclusively red-shifted absorption maxima are observed in all solvents used. In order to complete the picture of intramolecular aggregates through the selective design of H-aggregates, a squaraine-squaraine copolymer was synthesised containing the classic cisoid indolenine as well as the cisoid quinoline building block. Taking advantage of the highly structure directing self-assembly character of the quinoline moiety, the copolymer pSQBC indeed showes a broad, blue-shifted main absorption band in comparison with the monomer unit dSQBC. The shape of the absorption band manifold solely exhibited a minor solvent and temperature dependence indicating a persistent H-aggregate behaviour. Hence, as a proof of concept, it is shown that the optical properties of the polymers (H- and J-aggregate) and the corresponding superstructure can be inherently controlled by an adequate design of monomer precursors. The last chapter of this work deals, in contrast to all other chapters, with intermolecular aggregates. It is shown that the two star-shaped hexasquarainyl benzenes hSQA-1 and hSQA-2 exhibit a strong propensity for self-organisation. Concentration- and temperature-dependent studies reveal a great driving force for self-assembly in acetone. While the larger hSQA-2 instantaneously forms stable aggregates, the aggregates of hSQA-1 shows a pronounced kinetic stability. Taking advantage of the kinetic persistency of these aggregates, the corresponding kinetic activation parameters for aggregation and deaggregation can be assessed. The absorption spectra of both hexasquarainyl benzenes in the aggregated state reveal some striking differences. While hSQA-1 features an intensive, very narrow and blue-shifted absorption band, two red-shifted bands are observed for hSQA-2, which are closely located at the monomer absorption. The very small bandwidth of hSQA-1 are interpreted to be caused by exchange narrowing and pointed towards highly ordered supramolecular aggregates. The concentration-dependent data of the two hexasquarainyl benzenes can be fitted to the dimer-model with excellent correlation coefficients, yielding binding constants in excess of 10^6 M-1, respectively. Such high binding constants are very surprising, considering the unfavourable bulky 3,3-dimethyl groups of the indolenine units which should rather prevent aggregation. Joint theoretical and NMR spectroscopic methods were applied to unravel the supramolecular aggregate structure of hSQA-1, which is shown to consist of two stacked hexasquarainyl benzenes resembling the picture of two stacked bowls.}, subject = {Squaraine}, language = {en} } @phdthesis{Lerch2018, author = {Lerch, Maike Franziska}, title = {Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future.}, subject = {Biofilm}, language = {en} } @phdthesis{Budig2018, author = {Budig, Benedikt}, title = {Extracting Spatial Information from Historical Maps: Algorithms and Interaction}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-092-4}, doi = {10.25972/WUP-978-3-95826-093-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160955}, school = {W{\"u}rzburg University Press}, pages = {viii, 160}, year = {2018}, abstract = {Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century.}, subject = {Karte}, language = {en} } @phdthesis{Furth2018, author = {Furth, Sebastian}, title = {Linkable Technical Documentation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The success of semantic systems has been proven over the last years. Nowadays, Linked Data is the driver for the rapid development of ever new intelligent systems. Especially in enterprise environments semantic systems successfully support more and more business processes. This is especially true for after sales service in the mechanical engineering domain. Here, service technicians need effective access to relevant technical documentation in order to diagnose and solve problems and defects. Therefore, the usage of semantic information retrieval systems has become the new system metaphor. Unlike classical retrieval software Linked Enterprise Data graphs are exploited to grant targeted and problem-oriented access to relevant documents. However, huge parts of legacy technical documents have not yet been integrated into Linked Enterprise Data graphs. Additionally, a plethora of information models for the semantic representation of technical information exists. The semantic maturity of these information models can hardly be measured. This thesis motivates that there is an inherent need for a self-contained semantification approach for technical documents. This work introduces a maturity model that allows to quickly assess existing documentation. Additionally, the approach comprises an abstracting semantic representation for technical documents that is aligned to all major standard information models. The semantic representation combines structural and rhetorical aspects to provide access to so called Core Documentation Entities. A novel and holistic semantification process describes how technical documents in different legacy formats can be transformed to a semantic and linked representation. The practical significance of the semantification approach depends on tools supporting its application. This work presents an accompanying tool chain of semantification applications, especially the semantification framework CAPLAN that is a highly integrated development and runtime environment for semantification processes. The complete semantification approach is evaluated in four real-life projects: in a spare part augmentation project, semantification projects for earth moving technology and harvesting technology, as well as an ontology population project for special purpose vehicles. Three additional case studies underline the broad applicability of the presented ideas.}, subject = {Linked Data}, language = {en} } @phdthesis{Seifert2018, author = {Seifert, Sabine}, title = {New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C-C Coupling and Core Halogenation-Cyanation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156200}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The thesis describes the development of new synthetic strategies towards planar nanometer-sized and electron-deficient polycyclic aromatic dicarboximides, which are rather unexplored compared with the large variety of electron-rich polycyclic aromatic hydrocarbons and nanographenes. Thus, new polycyclic aromatic systems containing a different number of dicarboximide groups were designed since this class of compounds has revealed its significance in the past due to a range of desirable molecular properties and its high thermal and photochemical stability. The synthetic concept towards these systems includes different C-C coupling techniques that were combined within coupling cascade reactions. Therefore, this thesis provides new insights into the reactivity of aromatic substrates and elucidates mechanistic aspects of C-C coupling cascade reactions to facilitate the precise design of new and desirable materials based on polycyclic aromatic dicarboximides. Furthermore, structure-property relationships as well as the optical and electrochemical properties were investigated by UV/Vis absorption and fluorescence spectroscopy and cyclic or square wave voltammetry. Insights into the molecular structures in the solid state were obtained by single-crystal X-ray analysis. In subsequent studies, highly electron-deficient perylene bisimides and their reduced species have been investigated in detail. Thus, core-functionalized perylene bisimides were synthesized and UV/Vis absorption spectroscopy, spectroelectrochemistry and cyclic or square wave voltammetry were used to determine their optical properties and the stability of the individual reduced species.}, subject = {Kupplungsreaktion}, language = {en} } @unpublished{MuellerDraegerMaetal.2018, author = {M{\"u}ller, Stefan and Draeger, Simon and Ma, Kiaonan and Hensen, Matthias and Kenneweg, Tristan and Pfeiffer, Walter and Brixner, Tobias}, title = {Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, doi = {10.1021/acs.jpclett.8b00541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173468}, year = {2018}, abstract = {We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum-two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems.}, subject = {Fluoreszenz}, language = {en} } @phdthesis{Wandtner2018, author = {Wandtner, Bernhard}, title = {Non-driving related tasks in highly automated driving - Effects of task characteristics and drivers' self-regulation on take-over performance}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173956}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The rise of automated driving will fundamentally change our mobility in the near future. This thesis specifically considers the stage of so called highly automated driving (Level 3, SAE International, 2014). At this level, a system carries out vehicle guidance in specific application areas, e.g. on highway roads. The driver can temporarily suspend from monitoring the driving task and might use the time by engaging in so called non-driving related tasks (NDR-tasks). However, the driver is still in charge to resume vehicle control when prompted by the system. This new role of the driver has to be critically examined from a human factors perspective. The main aim of this thesis was to systematically investigate the impact of different NDR-tasks on driver behavior and take-over performance. Wickens' (2008) architecture of multiple resource theory was chosen as theoretical framework, with the building blocks of multiplicity (task interference due to resource overlap), mental workload (task demands), and aspects of executive control or self-regulation. Specific adaptations and extensions of the theory were discussed to account for the context of NDR-task interactions in highly automated driving. Overall four driving simulator studies were carried out to investigate the role of these theoretical components. Study 1 showed that drivers focused NDR-task engagement on sections of highly automated compared to manual driving. In addition, drivers avoided task engagement prior to predictable take-over situations. These results indicate that self-regulatory behavior, as reported for manual driving, also takes place in the context of highly automated driving. Study 2 specifically addressed the impact of NDR-tasks' stimulus and response modalities on take-over performance. Results showed that particularly visual-manual tasks with high motoric load (including the need to get rid of a handheld object) had detrimental effects. However, drivers seemed to be aware of task specific distraction in take-over situations and strictly canceled visual-manual tasks compared to a low impairing auditory-vocal task. Study 3 revealed that also the mental demand of NDR-tasks should be considered for drivers' take-over performance. Finally, different human-machine-interfaces were developed and evaluated in Simulator Study 4. Concepts including an explicit pre-alert ("notification") clearly supported drivers' self-regulation and achieved high usability and acceptance ratings. Overall, this thesis indicates that the architecture of multiple resource theory provides a useful framework for research in this field. Practical implications arise regarding the potential legal regulation of NDR-tasks as well as the design of elaborated human-machine-interfaces.}, subject = {Autonomes Fahrzeug}, language = {en} } @phdthesis{Sapozhnikova2018, author = {Sapozhnikova, Kateryna}, title = {Robust Stability of Differential Equations with Maximum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173945}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this thesis stability and robustness properties of systems of functional differential equations which dynamics depends on the maximum of a solution over a prehistory time interval is studied. Max-operator is analyzed and it is proved that due to its presence such kind of systems are particular case of state dependent delay differential equations with piecewise continuous delay function. They are nonlinear, infinite-dimensional and may reduce to one-dimensional along its solution. Stability analysis with respect to input is accomplished by trajectory estimate and via averaging method. Numerical method is proposed.}, subject = {Differentialgleichung}, language = {en} } @phdthesis{Schreiber2018, author = {Schreiber, Benjamin}, title = {Selective and enhanced fluorescence by biocompatible nanocoatings to monitor G-protein-coupled receptor dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173923}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fluorescence microscopy has become one of the most important techniques for the imaging of biological cells and tissue, since the technique allows for selective labeling with fluorescent molecules and is highly suitable for low-light applications down to the single molecule regime. The methodological requirements are well-defined for studying membrane receptors within a highly localized nanometer-thin membrane. For example, G-protein-coupled receptors (GPCRs) are an extensively studied class of membrane receptors that represent one of the most important pharmaceutical targets. Ligand binding and GPCR activation dynamics are suspected to take place at the millisecond scale and may even be far faster. Thus, techniques that are fast, selective, and live-cell compatible are required to monitor GPCR dynamics. Fluorescence resonance energy transfer (FRET) and total internal reflection fluorescence microscopy (TIRF-M) are methods of choice to monitor the dynamics of GPCRs selectively within the cell membrane. Despite the remarkable success of these modalities, there are limitations. Most importantly, inhomogeneous illumination can induce imaging artifacts, rendering spectroscopic evaluation difficult. Background signal due to scattering processes or imperfect labeling can hamper the signal-to-noise, thus limiting image contrast and acquisition speed. Careful consideration of the internal physiology is required for FRET sensor design, so that ligand binding and cell compatibility are well-preserved despite the fluorescence labeling procedures. This limitation of labeling positions leads to very low signal changes in FRET-based GPCR analysis. In addition, microscopy of these systems becomes even more challenging in single molecule or low-light applications where the accuracy and temporal resolution may become dramatically low. Fluorescent labels should therefore be brighter, protected from photobleaching, and as small as possible to avoid interference with the binding kinetics. The development of new fluorescent molecules and labeling methods is an ongoing process. However, a complete characterization of new labels and sensors takes time. So far, the perfect dye system for GPCR studies has not been found, even though there is high demand. Thus, this thesis explores and applies a different approach based on improved illumination schemes for TIRF-M as well as metal-coated coverslips to enhance fluorescence and FRET efficiency. First, it is demonstrated that a 360° illumination scheme reduces typical TIRF artifacts and produces a much more homogenously illuminated field of view. Second, membrane imaging and FRET spectroscopy are improved by metal coatings that are used to modulate the fluorescent properties of common fluorescent dyes. Computer simulation methods are used to understand the underlying photophysics and to design the coatings. Third, this thesis explores the operational regime and limitations of plasmonic approaches with high sectioning capabilities. The findings are summarized by three publications that are presented in the results section of this work. In addition, the theory of fluorescence and FRET is explained, with particular attention to its emission modulations in the vicinity of metal-dielectric layers. Details of the instrumentation, computer simulations, and cell culture are described in the method section. The work concludes with a discussion of the findings within the framework of recent technological developments as well as perspectives and suggestions for future approaches complete the presented work.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Semeniak2018, author = {Semeniak, Daniela}, title = {Role of bone marrow extracellular matrix proteins on platelet biogenesis and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelets, small anucleated blood cells responsible for hemostasis, interact at sights of injury with several exposed extracellular matrix (ECM) proteins through specific receptors. Ligand binding leads to activation, adhesion and aggregation of platelets. Already megakaryocytes (MKs), the immediate precursor cells in bone marrow (BM), are in constant contact to these ECM proteins (ECMP). The interaction of ECMP with MKs is, in contrast to platelets, less well understood. It is therefore important to study how MKs interact with sinusoids via the underlying ECMP. This thesis addresses three major topics to elucidate these interactions and their role in platelet biogenesis. First, we studied the topology of ECMP within BM and their impact on proplatelet formation (PPF) in vitro. By establishing a four-color immunofluorescence microscopy we localized collagens and other ECMP and determined their degree of contact towards vessels and megakaryocytes (MKs). In in vitro assays we could demonstrate that Col I mediates increased MK adhesion, but inhibits PPF by collagen receptor GPVI. By immunoblot analyses we identified that the signaling events underyling this inhibition are different from those in platelet activation at the Src family kinase level. Second, we determined the degree of MK-ECM interaction in situ using confocal laser scanning microscopy of four-color IF-stained femora and spleen sections. In transgenic mouse models lacking either of the two major collagen receptors we could show that these mice have an impaired association of MKs to collagens in the BM, while the MK count in spleen increased threefold. This might contribute to the overall unaltered platelet counts in collagen receptor-deficient mice. In a third approach, we studied how the equilibrium of ECMP within BM is altered after irradiation. Collagen type IV and laminin-α5 subunits were selectively degraded at the sinusoids, while the matrix degrading protease MMP9 was upregulated in MKs. Platelet numbers decreased and platelets became hyporesponsive towards agonists, especially those for GPVI activation. Taken together, the results indicate that MK-ECM interaction differs substantially from the well-known platelet-ECM signaling. Future work should further elucidate how ECMP can be targeted to ameliorate the platelet production and function defects, especially in patients after BM irradiation.}, subject = {Knochenmark}, language = {en} } @phdthesis{Kauk2018, author = {Kauk, Michael}, title = {Investigating the Molecular Mechanism of Receptor Activation at Muscarinic Receptors by Means of Pathway-Specific Dualsteric Ligands and Partial Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173729}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G protein-coupled receptors (GPCRs) form the biggest receptor family that is encoded in the human genome and represent the most druggable target structure for modern therapeutics respectively future drug development. Belonging to aminergic class A GPCRs muscarinic Acetylcholine receptors (mAChRs) are already now of clinical relevance and are also seen as promising future drug targets for treating neurodegenerative diseases like Alzheimer or Parkinson. The mAChR family consist of five subtypes showing high sequence identity for the endogenous ligand binding region and thus it is challenging until now to selectively activate a single receptor subtype. A well accepted method to study ligand binding, dynamic receptor activation and downstream signaling is the fluorescence resonance energy transfer (FRET) application. Here, there relative distance between two fluorophores in close proximity (<10 nm) can be monitored in a dynamic manner. The perquisite for that is the spectral overlap of the emission spectrum of the first fluorophore with the excitation spectrum of the second fluorophore. By inserting two fluorophores into the molecular receptor structure receptor FRET sensors can serve as a powerful tool to study dynamic receptor pharmacology. Dualsteric Ligands consist of two different pharmacophoric entities and are regarded as a promising ligand design for future drug development. The orthosteric part interacts with high affinity with the endogenous ligand binding region whereas the allosteric part binds to a different receptor region mostly located in the extracellular vestibule. Both moieties are covalently linked. Dualsteric ligands exhibit a dynamic ligand binding. The dualsteric binding position is characterized by a simultaneous binding of the orthosteric and allosteric moiety to the receptor and thus by receptor activation. In the purely allosteric binding position no receptor activation can be monitored. In the present work the first receptor FRET sensor for the muscarinic subtype 1 (M1) was generated and characterized. The M1-I3N-CFP sensor showed an unaltered physiological behavior as well as ligand and concentration dependent responses. The sensor was used to characterize different sets of dualsteric ligands concerning their pharmacological properties like receptor activation. It was shown that the hybrids consisting of the synthetic full agonist iperoxo and the positive allosteric modulator of BQCA type is very promising. Furthermore, it was shown for orthosteric as well as dualsteric ligands that the degree of receptor activation is highly dependent on the length of and the chemical properties of the linker moiety. For dualsteric ligands a bell-shaped activation characteristic was reported for the first time, suggesting that there is an optimal linker length for dualsteric ligands. The gained knowledge about hybrid design was then used to generate and characterize the first photo-switchable dualsteric ligand. The resulting hybrids were characterized with the M1-I3N-CFP sensor and were described as photo-inactivatable and dimmable. In addition to the ligand characterization the ligand application methodology was further developed and improved. Thus, a fragment-based screening approach for dualsteric ligands was reported in this study for the first time. With this approach it is possible to investigate dualsteric ligands in greater detail by applying either single ligand fragments alone or in a mixture of building blocks. These studies revealed the insights that the effect of dualsteric ligands on a GPCR can be rebuild by applying the single building blocks simultaneously. The fragment-based screening provides high potential for the molecular understanding of dualsteric ligands and for future screening approaches. Next, a further development of the standard procedure for measuring FRET by sensitized emission was performed. Under normal conditions single cell FRET is measured on glass coverslips. After coating the coverslips surface with a 20 nm thick gold layer an increased FRET efficiency up to 60 \% could be reported. This finding was validated in different approaches und in different configurations. This FRET enhancement by plasmonic surfaces was until yet unreported in the literature for physiological systems and make FRET for future projects even more powerful.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Schramm2018, author = {Schramm, Simon}, title = {Synthesis of Dualsteric Muscarinic M\(_1\) Acetylcholine Receptor Ligands and Neuroprotective Esters of Silibinin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173592}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Alzheimer's disease is a complex network of several pathological hallmarks. These characteristics always occur concomitantly and cannot be taken as distinct features of the disease. While there are hypotheses trying to explain the origin and progression of the illness, none of them is able to pinpoint a definitive cause. This fact challenges researchers not to focus on one individual hallmark but, bearing in mind the big picture, target two or more indications at once. This work, therefore, addresses two of the major characteristics of AD: the cholinergic hypothesis and neurotoxic oxidative stress. The former was achieved by targeting the postsynaptic muscarinic M1 acetylcholine receptor to further investigate its pharmacology, and the latter with the synthesis of neuroprotective natural antioxidant hybrids. The first aim was the design and synthesis of dualsteric agonists of the muscarinic M1 acetylcholine receptor. Activation of this receptor was previously shown to improve AD pathologies like the formation of Aβ and NFTs and protect against oxidative stress and caspase activation. Selectively targeting the M1 receptor is difficult as subtypes M1 - M5 of the muscarinic AChRs largely share the same orthosteric binding pocket. Orthosteric ligands are thus unsuitable for selective activation of one specific subtype. Secondary, allosteric binding sites are more diverse between subtypes. Allosteric ligands are, however, in most cases dependent on an orthosteric ligand to cause downstream signals. Dualsteric ligands thus utilize the characteristics of both orthosteric and allosteric ligands in form of a message-address concept. Bridged by an alkylene-linker, the allosteric part ensures selectivity, whereas the orthosteric moiety initiates receptor activation. Two sets of compounds were synthesised in this sense. In both cases, the orthosteric ligand carbachol is connected to an allosteric ligand via linkers of different chain length. The first set utilizes the selective allosteric M1 agonist TBPB, the second set employs the selective M1 positive allosteric modulator BQCA. Six compounds were obtained in twelve-step syntheses each. For each one, a reference compound lacking the carbachol moiety was synthesised. The dualsteric ligands 1a-c and 2a c were tested in the IP1 assay. The assay revealed that the TBPB-dualsterics 1 are not able to activate the receptor, whereas the respective TBPB-alkyl reference compounds 27 gave signals depending on the length of the alkylene-linker, suggesting allosteric partial agonism of alkyl compounds 27 and no dualsteric binding of the putatively dualsteric compounds 1. The dualsteric BQCA molecules 2, however, activated the receptor as expected. Efficacy of the C5 linked compound 2b was the highest, yet C3 and C8 compounds (2a and 2c) also showed partial agonism. In this case, the reference compounds 31 showed no receptor activation, implying the intended dualsteric binding mode of the BQCA-carbachol compounds 2. Further investigations will be conducted by the working group of Dr. Christian Tr{\"a}nkle at the Department of Pharmacology at the University of Bonn to confirm binding modes and determine affinities as well as selectivity of the synthesised dualsteric compounds. The second project dealt with the design, synthesis and biological evaluation of neuroprotective esters of the flavonolignan silibinin. While silibinin is already a potent antioxidant, it has been observed that the 7-OH group has a pro-oxidative character, making this position attractive for functionalisation. In order to obtain more potent antioxidants, the pro-oxidative position was esterified with other antioxidant moieties like ferulic acid 35 and derivatives thereof. Seventeen esters of silibinin 32, including pure diastereomers of 7 O feruloylsilibinin (43a and 43b) and a cinnamic acid ester of 2,3-dehydrosilibinin 46, were synthesised by regioselective esterification using acyl chlorides under basic conditions. The physicochemical antioxidant properties were assessed in the FRAP assay. This assay revealed no improvement of the antioxidant properties except for 7-O-dihydrosinapinoylsilibinin 39b. These results, however, do not correlate with the neuroprotective properties determined in the HT-22 hippocampal neuronal cell model. The assay showed overadditive neuroprotective effects of the esters exceeding those of its components and equimolar mixtures with the most potent compounds being 7-O-cinnamoylsilibinin 37a, 7-O-feruloylsilibinin 38a and the acetonide-protected caffeic acid ester 40a. These potent Michael system bearing compounds may be considered as "PAINS", but the assays used to assess antioxidant and neuroprotective activities were carefully chosen to avoid false positive readouts. The most potent compounds 37a and 38a, as well as the diastereomers 43a and 43b, were further studied in assays related to AD. In vitro ischemia, inhibition of microglial activation, PC12 cell differentiation and inhibition of Aβ42 and τ protein aggregation assays showed similar results in terms of overadditive effects of the synthesised esters. Moreover, the diastereomers 43a and 43b showed differences in their activities against oxytosis (glutamate-induced apoptosis), inhibition of Aβ42 and τ protein aggregation, and PC12 cell differentiation. The stereospecific effect or mode of action against Aβ42 and τ protein aggregation is more pronounced than that of silybin A (32a) and silybin B (32b) reported in literature and needs to be elucidated in future work. Stability measurements in cell culture medium revealed that the esters do not only get hydrolysed but are partially oxidised to their respective 2,3-dehydrosilibinin esters. Because dehydrosilibinin 45 itself is described as a more potent antioxidant than silibinin 32, 7 O cinnamoyl-2,3-dehydrosilibinin 46 was expected to be even more potent than its un-oxidised counterpart 37a in terms of neuroprotection. The oxytosis assay, however, showed that the neurotoxicity of 46 is much more pronounced, especially at higher concentrations, reducing its neuroprotective potential. Dehydrosilibinin esters are therefore inferior to the silibinin esters for application as neuroprotectants, because of the difficulty of their synthesis and their increased neurotoxicity. A synergistic effect of both species (silibinin and the oxidised form) might, however, be possible or even necessary for the pronounced neuroprotective effects of silibinin esters. As the dehydro-species show distinct neuroprotective properties at low concentrations, their continuous formation over time might make an essential contribution to the overall neuroprotection of the synthesised esters. Due to solubility issues for some of the ester compounds, 7-O-cinnamoylsilibinin 37a was converted into a highly soluble hemisuccinate. The vastly improved solubility of 7 O cinnamoyl-23-O-succinylsilibinin 48 was confirmed in shake-flask experiments. Contrary to expectation, stability examinations showed that the succinyl compound 48 is not cleaved to form 7-O-cinnamoylsilibinin 37a. Neuroprotection assays confirmed that 48 is not a prodrug of the corresponding ester. It was determined that the main site of hydrolysis is the 7-position, cleaving 37 to silibinin 32 and cinnamic acid thus reducing the compound's neuroprotective effects. Nevertheless, the compound still showed neuroprotection at a concentration of 25 µM. The improved solubility might be more beneficial than the higher neuroprotection of the poorly soluble parent compound 37a in vivo. 7 O Cinnamoylsilibinin 37a was further investigated to reduce Aβ25 35 induced learning impairment in mice. While tendencies of improved short-term and long-term memory in the animals were observed, the effects are not yet statistically significant in both Y-maze and passive avoidance tests. A greater number of test subjects is necessary to ensure correctness of the preliminary results presented in this work. However, an effect of ester 37a is observable in vivo, showing blood-brain barrier penetration. The esters synthesised are a novel approach for the treatment of AD as they show strong neuroprotective effects and their hydrolysis products or metabolites are only non-toxic natural products.}, subject = {Organische Synthese}, language = {en} } @article{WernerEisslerHayakawaetal.2018, author = {Werner, Rudolf A. and Eissler, Christoph and Hayakawa, Nobuyuki and Arias-Loza, Paula and Wakabayashi, Hiroshi and Javadi, Mehrbod S. and Chen, Xinyu and Shinaji, Tetsuya and Lapa, Constantin and Pelzer, Theo and Higuchi, Takahiro}, title = {Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated \(^{18}\)F-FDG PET}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {17631}, doi = {10.1038/s41598-018-35986-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171765}, year = {2018}, abstract = {In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the LV diastolic function using electrocardiography (ECG)-gated \(^{18}\)F-fluorodeoxyglucose positron emission tomography (\(^{18}\)F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic rat model. ECG-gated \(^{18}\)F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa) and ZL control rats at age of 13 weeks (n=6, respectively). Under hyperinsulinemic-euglycemic clamp to enhance cardiac activity, \(^{18}\)F-FDG was administered and subsequently, list-mode imaging using a dedicated small animal PET system with ECG signal recording was performed. List-mode data were sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate (PFR)) were obtained using an automatic ventricular edge detection software. No significant difference in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5±4.2 vs. 59.4±4.5\%; HR: 331±35 vs. 309±24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1±0.8 vs. 10.2±1 Enddiastolic Volume/sec, P<0.01). Investigating a diabetic rat model, ECG-gated \(^{18}\)F-FDG PET imaging detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become apparent.}, language = {en} } @phdthesis{Fleszar2018, author = {Fleszar, Krzysztof}, title = {Network-Design Problems in Graphs and on the Plane}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-076-4 (Print)}, doi = {10.25972/WUP-978-3-95826-077-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154904}, school = {W{\"u}rzburg University Press}, pages = {xi, 204}, year = {2018}, abstract = {A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon.}, subject = {Euklidische Ebene}, language = {en} } @phdthesis{Nuernberger2018, author = {N{\"u}rnberger, Fabian}, title = {Timing of colony phenology and foraging activity in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment.}, subject = {Biene}, language = {en} } @phdthesis{Wedel2018, author = {Wedel, Carolin}, title = {The impact of DNA sequence and chromatin on transcription in \(Trypanosoma\) \(brucei\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For cellular viability, transcription is a fundamental process. Hereby, the DNA plays the most elemental and highly versatile role. It has long been known that promoters contain conserved and often well-defined motifs, which dictate the site of transcription initiation by providing binding sites for regulatory proteins. However, research within the last decade revealed that it is promoters lacking conserved promoter motifs and transcribing constitutively expressed genes that constitute the majority of promoters in eukaryotes. While the process of transcription initiation is well studied, whether defined DNA sequence motifs are required for the transcription of constitutively expressed genes in eukaryotes remains unknown. In the highly divergent protozoan parasite Trypanosoma brucei, most of the proteincoding genes are organized in large polycistronic transcription units. The genes within one polycistronic transcription unit are generally unrelated and transcribed by a common transcription start site for which no RNA polymerase II promoter motifs have been identified so far. Thus, it is assumed that transcription initiation is not regulated but how transcription is initiated in T. brucei is not known. This study aimed to investigate the requirement of DNA sequence motifs and chromatin structures for transcription initiation in an organism lacking transcriptional regulation. To this end, I performed a systematic analysis to investigate the dependence of transcription initiation on the DNA sequence. I was able to identify GT-rich promoter elements required for directional transcription initiation and targeted deposition of the histone variant H2A.Z, a conserved component during transcription initiation. Furthermore, nucleosome positioning data in this work provide evidence that sites of transcription initiation are rather characterized by broad regions of open and more accessible chromatin than narrow nucleosome depleted regions as it is the case in other eukaryotes. These findings highlight the importance of chromatin during transcription initiation. Polycistronic RNA in T. brucei is separated by adding an independently transcribed miniexon during trans-splicing. The data in this work suggest that nucleosome occupancy plays an important role during RNA maturation by slowing down the progressing polymerase and thereby facilitating the choice of the proper splice site during trans-splicing. Overall, this work investigated the role of the DNA sequence during transcription initiation and nucleosome positioning in a highly divergent eukaryote. Furthermore, the findings shed light on the conservation of the requirement of DNA motifs during transcription initiation and the regulatory potential of chromatin during RNA maturation. The findings improve the understanding of gene expression regulation in T. brucei, a eukaryotic parasite lacking transcriptional Regulation.}, subject = {Transkription}, language = {en} } @phdthesis{Bacmeister2018, author = {Bacmeister, Lucas}, title = {Effect of Cadherin-13 inactivation on different GABAergic interneuron populations of the mouse hippocampus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Cadherin-13 (CDH13) is an atypical member of the cadherin superfamily, a group of membrane proteins mediating calcium-dependent cellular adhesion. Although CDH13 shows the classical extracellular cadherin structure, the typical transmembrane and cytoplasmic domains are absent. Instead, CDH13 is attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. These findings and many studies from different fields suggest that CDH13 also plays a role as a cellular receptor. Interestingly, many genome-wide association studies (GWAS) have found CDH13 as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and other neurodevelopmental disorders. In previous work from our research group, strong expression of Cdh13 mRNA in interneurons of the hippocampal stratum oriens (SO) was detected. Therefore, double-immunofluorescence studies were used to evaluate the degree of co-expression of CDH13 with seven markers of GABAergic interneuron subtypes. For this purpose, murine brains were double stained against CDH13 and the respective marker and the degree of colocalization in the SO of the hippocampus was assessed. Based on the result of this immunofluorescence study, quantitative differences in interneuron subtypes of the SO between Cdh13 knockout (ko), heterozygote (het) and wildtype (wt) mice were investigated in this dissertation using stereological methods. In addition, genotype- dependent differences in the expression of genes involved in GABAergic and glutamatergic neurotransmission were analyzed by quantitative real-time PCR (qRT-PCR). Primers targeting different GABA receptor subunits, vesicular GABA and glutamate transporter, GABA synthesizing enzymes and their interaction partners were used for this purpose. The results of the stereological quantification of the interneuron subtypes show no significant differences in cell number, cell density or volume of the SO between Cdh13 ko, het and wt mice. On the other hand, qRT-PCR results indicate significant differences in the expression of tropomyosin-related kinase B gene (TrkB), which encodes the receptor of brain-derived neurotrophic factor (BDNF), a regulator of GABAergic neurons. This finding supports a role for CDH13 in the regulation of BDNF signaling in the hippocampus.}, subject = {Cadherine}, language = {en} } @phdthesis{Feineis2018, author = {Feineis, Susanne}, title = {Thioether-poly(glycidol) as multifunctional coating system for gold nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The aim of this thesis was the development of a multifunctional coating system for AuNPs based on thioether polymers, providing both excellent colloidal stability and a variable possibility to introduce functionalities for biological applications. First, two thioether-polymer systems were synthesised as a systematic investigation into colloidal stabilisation efficacy. Besides commonly used monovalent poly(ethylene glycol) (PEG-SR), its structural analogue linear poly(glycidol) (PG-SR) bearing multiple statistically distributed thioether moieties along the backbone was synthesised. Additionally, respective thiol analogues (PEG-SH and PG-SH) were produced and applied as reference. Successive modification of varyingly large AuNPs with aforementioned thiol- and thioether-polymers was performed via ligand exchange reaction on citrate stabilised AuNPs. An increased stabilisation efficacy of both thioether-polymers against biological and physiological conditions, as well as against freeze-drying compared to thiol analogues was determined. Based on the excellent colloidal stabilisation efficacy and multi-functionalisability of thioether-PG, a plethora of functional groups, such as charged groups, hydrophilic/hydrophobic chains, as well as bio-active moieties namely diazirine and biotin was introduced to the AuNP surface. Moreover, the generic and covalent binding of diazirine-modified PG-SR with biomolecules including peptides and proteins was thoroughly demonstrated. Lastly, diverse applicability and bioactivity of aforementioned modified particles in various studies was displayed, once more verifying the introduction of functionalities. On the one hand the electrostatic interaction of charged AuNPs with hydrogels based on hyaluronic acid was applied to tune the release kinetics of particles from three-dimensional scaffolds. On the other hand the strong complexation of siRNA onto two positively charged AuNPs was proven. The amount of siRNA payload was tuneable by varying the surface charge, ionic strength of the surrounding medium and the N/P ratio. Moreover, the biological activity and selectivity of the biotin-streptavidin conjugation was verified with respectively functionalised particles in controlled agglomeration test and in laser-triggered cell elimination experiments. In the latter, streptavidin-functionalised AuNPs resulted in excellent depletion of biotinylated cells whereas unfunctionalised control particles failed, excluding unspecific binding of these particles to the cell surface.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Munz2018, author = {Munz, Eberhard}, title = {Physiological and metabolical high-resolution MRI of plants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172518}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {177}, year = {2018}, abstract = {The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. J{\"a}ger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Boeck2018, author = {B{\"o}ck, Thomas}, title = {Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning. Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far. The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4\% PEGDA as the most suitable concentration for these requirements (Section 5.1.2). In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6\%) and compared to PEGDA (0.4\%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6\%) HA-SH hydrogels compared to PEGTA (0.6\%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3). The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6\%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels. Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1). The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2). In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier. A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment. The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4). With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications. Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206-209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes.}, subject = {Hyalurons{\"a}ure}, language = {en} } @unpublished{SednevMykhailiukChoudhuryetal.2018, author = {Sednev, Maksim V. and Mykhailiuk, Volodymyr and Choudhury, Priyanka and Halang, Julia and Sloan, Katherine E. and Bohnsack, Markus T. and H{\"o}bartner, Claudia}, title = {N\(^6\)-methyladenosine-sensitive RNA-cleaving deoxyribozymes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {https://doi.org/10.1002/anie.201808745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171753}, year = {2018}, abstract = {Deoxyribozymes are synthetic enzymes made of DNA that can catalyze the cleavage or formation of phosphodiester bonds and are useful tools for RNA biochemistry. Here we report new RNA-cleaving deoxyribozymes to interrogate the methylation status of target RNAs, thereby providing an alternative method for the biochemical validation of RNA methylation sites containing N\(^6\)-methyladenosine, which is the most wide-spread and extensively investigated natural RNA modification. Using in vitro selection from random DNA, we developed deoxyribozymes that are sensitive to the presence of N\(^6\)-methyladenosine in RNA near the cleavage site. One class of these DNA enzymes shows faster cleavage of methylated RNA, while others are strongly inhibited by the modified nucleotide. The general applicability of the new deoxyribozymes is demonstrated for several examples of natural RNA sequences, including a lncRNA and a set of C/D box snoRNAs, which have been suggested to contain m\(^6\)A as a regulatory element that influences RNA folding and protein binding.}, language = {en} } @article{NoseWernerUedaetal.2018, author = {Nose, Naoko and Werner, Rudolf A. and Ueda, Yuichiro and G{\"u}nther, Katharina and Lapa, Constantin and Javadi, Mehrbod S. and Fukushima, Kazuhito and Edenhofer, Frank and Higuchi, Takahiro}, title = {Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay}, series = {International Journal of Cardiology}, volume = {269}, journal = {International Journal of Cardiology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170699}, pages = {229-234}, year = {2018}, abstract = {BACKGROUND: Recent developments in cellular reprogramming technology enable the production of virtually unlimited numbers of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Although hiPSC-CM share various characteristic hallmarks with endogenous cardiomyocytes, it remains a question as to what extent metabolic characteristics are equivalent to mature mammalian cardiomyocytes. Here we set out to functionally characterize the metabolic status of hiPSC-CM in vitro by employing a radionuclide tracer uptake assay. MATERIAL AND METHODS: Cardiac differentiation of hiPSC was induced using a combination of well-orchestrated extrinsic stimuli such as WNT activation (by CHIR99021) and BMP signalling followed by WNT inhibition and lactate based cardiomyocyte enrichment. For characterization of metabolic substrates, dual tracer uptake studies were performed with \(^{18}\)F‑2‑fluoro‑2‑deoxy‑d‑glucose (\(^{18}\)F-FDG) and \(^{125}\)I‑β‑methyl‑iodophenyl‑pentadecanoic acid (\(^{125}\)I-BMIPP) as transport markers of glucose and fatty acids, respectively. RESULTS: After cardiac differentiation of hiPSCs, in vitro tracer uptake assays confirmed metabolic substrate shift from glucose to fatty acids that was comparable to those observed in native isolated human cardiomyocytes. Immunostaining further confirmed expression of fatty acid transport and binding proteins on hiPSC-CM. CONCLUSIONS: During in vitro cardiac maturation, we observed a metabolic shift to fatty acids, which are known as a main energy source of mammalian hearts, suggesting hi-PSC-CM as a potential functional phenotype to investigate alteration of cardiac metabolism in cardiac diseases. Results also highlight the use of available clinical nuclear medicine tracers as functional assays in stem cell research for improved generation of autologous differentiated cells for numerous biomedical applications.}, subject = {Stammzelle}, language = {en} } @phdthesis{Behets2018, author = {Behets, Jean Nicolas}, title = {Biomimetic calcium phosphate modification of 3D-printed tissue engineering scaffolds using reactive star-shaped macromers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Biomimetic calcium phosphate (CaP) coatings imitate the trabecular bones surface structure and have shown to promote osteogenic differentiation in multipotent cells. The work of this thesis focused on the problem of former CaP coatings cracking and flaking off when being put on a bendable core structure like a 3D-printed poly (ε-caprolactone) (PCL) scaffold. The aim was to provide a chemical linkage between PCL and CaP using a star-shaped polymer (sPEG) and a phosphonate, 2-aminoethylphosphonic acid (2-AEP). First, a published CaP coating protocol was revised and investigated in terms of etching parameters for the PCL scaffold. Results presented reproducible thick coatings for all groups. The protocol was then broadened to include subsequent scaffold incubation in sPEG and 2-AEP solutions. Homogenous CaP coatings of decreased thickness presented themselves, proving feasibility. However, as is often found with physical CaP coating depositions, there were some irregular outcomes even during the same experimental group. A lower consumption of the chemical 2-AEP, for economic reasons, meant that the protocol was altered to simultaneously incubate scaffolds with sPEG and 2-AEP including preceding calculations for molar ratios. For ratios 1:1, 1:2 and 1:3, again a homogenous CaP coating was produced on most of the samples, although reproducibility issues maintained. However, the mechanical bending to induce surface cracking showed that the CaP did strongly bond to the sPEG/2-AEP, while the control CaP coating flaked off the surface in large pieces. This research demonstrates that chemically-bound CaP coatings resist flaking off the fiber surface. Future investigations should focus on the mechanisms of CaP crystallization, to improve reproducibility.}, subject = {Tissue engineering}, language = {en} } @article{WernerHaenscheidLealetal.2018, author = {Werner, Rudolf and H{\"a}nscheid, Heribert and Leal, Jeffrey P. and Javadi, Mehrbod S. and Higuchi, Takahiro and Lodge, Martin A. and Buck, Andreas K. and Pomper, Martin G. and Lapa, Constantin and Rowe, Steven P.}, title = {Impact of Tumor Burden on Quantitative [\(^{68}\)Ga]DOTATOC Biodistribution}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170280}, pages = {1-9}, year = {2018}, abstract = {Purpose: As has been previously reported, the somatostatin receptor (SSTR) imaging agent [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate ([\(^{68}\)Ga]DOTATATE) demonstrates lower uptake in normal organs in patients with a high neuroendocrine tumor (NET) burden. Given the higher SSTR affinity of [\(^{68}\)Ga]DOTATATE, we aimed to quantitatively investigate the biodistribution of [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ([68Ga]DOTATOC) to determine a potential correlation between uptake in normal organs and NET burden. Procedures: Of the 44 included patients, 36/44 (82\%) patients demonstrated suspicious radiotracer uptake on [\(^{68}\)Ga]DOTATOC positron emission tomography (PET)/x-ray computed tomography (CT). Volumes of Interest (VOIs) were defined for tumor lesions and normal organs (spleen, liver, kidneys, adrenals). Mean body weight corrected standardized uptake value (SUV\(_{mean}\)) for normal organs was assessed and was used to calculate the corresponding mean specific activity uptake (Upt: fraction of injected activity per kg of tissue). For the entire tumor burden, SUV\(_{mean}\), maximum standardized uptake value (SUV\(_{max}\)), and the total mass (TBM) was calculated and the decay corrected tumor fractional uptake (TBU) was assessed. A Spearman's rank correlation coefficient was used to determine the correlations between normal organ uptake and tumor burden. Results: The median SUV\(_{mean}\) was 18.7 for the spleen (kidneys, 9.2; adrenals, 6.8; liver, 5.6). For tumor burden, the median values were SUV\(_{mean}\) 6.9, SUV\(_{max}\) 35.5, TBM 42.6g, and TBU 1.2\%. With increasing volume of distribution, represented by lean body mass and body surface area (BSA), Upt decreased in kidneys, liver, and adrenal glands and SUV\(_{mean}\) increased in the spleen. Correlation improved only for both kidneys and adrenals when the influence of the tumor uptake on the activity available for organ uptake was taken into account by the factor 1/(1-TBU). TBU was neither predictive for SUV\(_{mean}\) nor for Upt in any of the organs. The distribution of organ Upt vs. BSA/(1-TBU) were not different for patients with minor TBU (<3\%) vs. higher TBU (>7\%), indicating that the correlations observed in the present study are explainable by the body size effect. High tumor mass and uptake mitigated against G1 NET. Conclusions: There is no significant impact on normal organ biodistribution with increasing tumor burden on [\(^{68}\)Ga]DOTATOC PET/CT. Potential implications include increased normal organ dose with [\(^{177}\)Lu-DOTA]\(^0\)-D-Phe\(^1\)-Tyr\(^3\)-Octreotide and decreased absolute lesion detection with [\(^{68}\)Ga]DOTATOC in high NET burden.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Gerlach2018, author = {Gerlach, Jennifer}, title = {Influence of Myc-interacting proteins on transcription and development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor Myc interacts with several co-factors to regulate growth and proliferationand thereby enables normal animal development. Deregulation of Myc is associated witha wide range of human tumors. Myc binds to DNA together with its dimerization partner Max, preferentially to canonical E-box motifs, but this sequence-specific interaction is probably not sufficient for Myc's binding to target genes. In this work, the PAF1 complex was characterized as a novel co-factor of Myc in Drosophila melanogaster. All components of the complex are required for Myc's recruitment to chromatin, but the subunit Atu has the strongest effect on Myc's binding to target genes through ist direct physical interaction with Myc. Unexpectedly, the impact of Atu depletion on the Expression of Myc target genes was weak compared to its effect on Myc binding. However, the influence of Atu becomes more prominent in situations of elevated Myc levels in vivo . Mycrepressed as well as Myc-activated targets are affected, consistent with the notion that Myc recruitment is impaired. An independent set of analyses revealed that Myc retains substantial activity even in the complete absence of Max. The overexpression of Myc in Max0 mutants specifically blocks their pupariation without affecting their survival, which raised the possibility that Myc might affect ecdysone biosynthesis. This connection was studied in the second part of this Thesis which showed that Myc inhibits the expression of ecdysteroidogenic genes and thereby the production of ecdysone. Myc most likely affects the signaling pathways (PTTH and insulin signaling) upstream of the PG, the organ where ecdysone is produced. By combining existing ChIPseq, RNAseq and electronic annotation data, we identified five potential Maxindependent Myc targets and provided experimental data that they might be involved in Myc's effect on Max mutant animals. Together our data confirm that some Myc functions are Max-independent and they raise the possibility that this effect might play a role during replication.}, subject = {Taufliege}, language = {en} } @phdthesis{Schaefer2018, author = {Sch{\"a}fer, Julian}, title = {Synthesis and Photophysical Investigation of Donor-Acceptor-Substituted meta- and para-Benzene Derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im ersten Teil dieser Arbeit wurde die erfolgreiche Synthese einer Serie von bisTriarylamin (bisTAA) Verbindungen vorgestellt. Zum einen wurde das Substitutionmuster an der Benzol Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pX bzw. mX), und zum anderen die energetische Lage der Br{\"u}ckeneinheit durch zwei elektronen-schiebende oder ziehende Substituenten X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Im Falle der meta-Serie wurden auch einige in 4,6-Position substituierte Verbinungen hergestellt (mX46). Die neutral Verbindungen wurden bez{\"u}glich ihrer elektrochemischen und photophysikalischen Eigenschaften untersucht. Durch Oxidation konnten die gemischt valenten (MV), kationischen bisTAA-Verbindungen erzeugt werden. Der thermisch induzierte Lochtransfer (HT) wurde durch temperatur-abh{\"a}ngige ESR-Spektroskopie untersucht. W{\"a}hrend die HT-Rate k und HT-Barriere ΔG in mX unbeeinflusst von den Substituenten X sind, steigen gleichzeitig k und ΔG in der pX-Serie mit zunehmenden Elektonenschub von X an. Diese zun{\"a}chst widerspr{\"u}chliche Beobachtung konnte durch einen ansteigenden Einfluss von L{\"o}sungsmitteleffekten und dadurch resultierend, einer zus{\"a}tzlichen effektiven Barriere erkl{\"a}rt werden. Der optisch induzierte Lochtransfer wurde mittels UV/Vis/NIR-Spektroskopie untersucht. Die pX-Serie zeigte eine Zuhname der elektronischen Kopplung V und dementsprechende eine Abnahme von ΔG, mit Anstieg des elektonenschiebenden Charakters von X. F{\"u}r mX war eine spektroskopische Bestimmung dieser Parameter nicht m{\"o}glich. Die mX46-Serie zeigte ein intermedi{\"a}res Verhalten, wobei MV-Verbindungen mit stark elektronenschiebenden X eine {\"a}hnliche hohe Kopplungen wie pX aufwiesen, was mit Hilfe von DFT-Rechnungen bez{\"u}glich der Molek{\"u}lorbitale erkl{\"a}rt werden konnte. Im zweiten Teil dieser Arbeit wurde die Synthese einer Serie von Verbindungen mit Triarylamin (TAA) als Donor und Naphthalindiimid (NDI) als Akzeptor vorgestellt. Auch hier wurde zum einen das Substitutionmuster an der Benzol-Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pXNDI bzw. mXNDI) variieiet und die energetische Lage der durch X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Außerdem wurde die in 4,6-Position substituierte Verbinungen mOMe46NDI hergestellt. Alle Verbindungen wurden bez{\"u}glich ihrer elektochemischen und photophysikalischen Eigenschaften untersucht. Die Elektronentransferprozesse der Ladungsseparierung (CS) und Ladungsrekombination (CR) dieser Verbindungen sollten mittels transienter Absorptionsspektroskopie (TA) in Toluol untersucht werden. F{\"u}r die Nitroverbindungen p-/mNO2NDI war dies nicht m{\"o}glich, da sich diese unter Bestrahung zersetzten. Die CR von pXNDI waren nicht im ns-Bereich detektierbar, weshalb sich auf die mXNDI-Serie (mit X = OMe-CN) konzentriert wurde. Die CS wurde mittels fs-TA untersucht. Nach optischer Anregung konnte die Bildung eines CS-Zustandes detektiert werden, dessen Bildungsgeschwindigkeit hin zu elektronen-ziehenden Substituenten X steigt. Die CR wurde mit ns-TA untersucht. Sie findet in der Marcus invertierten Region statt und zeichnet sich wird durch ein biexponentialles Abklingverhaten, was durch ein Singulet-Triplett Gleichgewicht im CS-Zustand zustande kommt, aus. Durch Anlegen eines externen Magnetfeldes ließ sich das Abklingverhalten entscheidend ver{\"a}ndern und es konnte eine Singulett-Triplett Aufspaltung nachgewiesen werden. Dieser Befund konnte weiterhin durch Simulation der Abklingkurven best{\"a}tigt werden. In beiden Teilen dieser Arbeit konnte ein entscheidender Einfluss der Benzolbr{\"u}cke auf die auftretenden Ladungstransferprozesse gezeigt werden. F{\"u}r den HT in Grundzustand der MV bisTAA Verbindungen, sowie der ET im angeregten Zustand der Donor-Akzeptor-Verbindungen, wurden die h{\"o}chsten ET-Raten f{\"u}r die para-Serien pX und pXNDI gefunden, w{\"a}hrend die meta-Serien mX und mXNDI deutlch kleine Transferraten aufwiesen. In beiden Studien zeigten die meta46-Verbindungen mX46 und mOMeNDI46 ein intermedi{\"a}res Verhalten, zwischen denen der para- und meta-Verbindungen.}, subject = {Synthese}, language = {en} } @phdthesis{CabelloGonzalez2018, author = {Cabello Gonz{\´a}lez, Victoria}, title = {From behavioral to neurobiological characterization of Rsk2 knockout mice as an animal model for Coffin-Lowry syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171275}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coffin-Lowry syndrome is a rare syndromic form of X-linked mental retardation caused by heterogeneous loss-of-function mutations in the gene RPS6KA3 that encodes the RSK2 protein. Clinical features are delayed motor development, small height, progressive skeletal malformations and mental retardation. Rsk2 deficiency affects behavioral, cellular and molecular functions. To characterize and investigate how this deficiency affects these functions, we made a series of experiments using Rsk2-deficient mice as the animal model for Coffin-Lowry syndrome. We applied a battery of behavioral tests and included the use of the IntelliCage for the first time as a behavioral paradigm to study anxiety-like behavior and depression-like behavior in Rsk2-deficient mice. Results from the conventional behavioral tests and from the IntelliCage indicate that Rsk2-deficient mice may have an anti-anxiety and anti-depressive phenotype. We evaluated in Rsk2 deficient mice the relative gene expression of a set of genes coding for proteins related to RSK2 which are involved in fear memory, synaptic plasticity, neurogenesis, learning, emotional behavior and stress. We found gene expression alterations in the prefrontal cortex and striatum. These results suggest that RSK2 may be involved in the expression of the genes. RSK2 is known to be related to monoamine neurotransmitter function. We measured the levels of dopamine, serotonin and noradrenaline/norepinephrine and their metabolites in different brain regions of Rsk2-deficient mice. We found differences in the dopaminergic and noradrenergic systems suggesting an increased or decreased activity of these neurotransmission systems as a result of Rsk2 deficiency. Adult neurogenesis is a form of neuronal plasticity and a multi-step process of cell development. We explored if this form of neuronal plasticity was affected by Rsk2-deficiency. Our results indicate that adult hippocampal neurogenesis is not influenced by lifelong Rsk2 deficiency. It would be worth to analyze in the future other aspects of neuroplasticity. We have confirmed, that behavioral characteristics of Rsk2-deficient mice make them an interesting model to study the Coffin-Lowry syndrome by extending the behavioral characterization on the emotional level. Furthermore, we have extended the characterization of the model on a molecular level, opening new opportunities to study and understand the pathophysiological basis of the Coffin-Lowry syndrome.}, subject = {Knockout }, language = {en} } @phdthesis{Kunz2018, author = {Kunz, Valentin}, title = {Supramolecular Approaches for Water Oxidation Catalysis with Ruthenium Complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154820}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The catalytic splitting of water into its elements is an important reaction to establish hydrogen as a solar fuel. The bottle-neck of this process is considered to be the oxidative half reaction generating oxygen, and good catalysts are required to handle the complicated redox chemistry involved. As can be learned from nature, the incorporation of the catalytically active species into an appropriate matrix can help to improve the overall performance. Thus, the aim of the present thesis was to establish novel supramolecular approaches to improve water oxidation catalysis using the catalytically active {Ru(bda)} fragment as key motive (bda = 2,2'-bipyridine-6,6'-dicarboxylate). First, the synthesis of ruthenium catalysts gathering three {Ru(bda)} water oxidation subunits in a macrocyclic fashion is described. By using bridging bipyridine ligands of different lengths, metallosupramolecular macrocycles with distinct sizes have been obtained. Interestingly, an intermediate ring size has been proven to be optimal for the catalytic water oxidation. Detailed kinetic, spectroscopic, and theoretical studies helped to identify the reaction mechanism and to rationalize the different catalytic activities. Furthermore, solubilizing side chains have been introduced for the most active derivative to achieve full water solubility. Secondly, the {Ru(bda)} fragment was embedded into supramolecular aggregates to generate more stable catalytic systems compared to a homogeneous reference complex. Therefore, the catalyst fragment was equipped with axial perylene bisimide (PBI) ligands, which facilitate self-assembly. Moreover, the influence of the different accessible aggregate morphologies on the catalytic performance has been investigated.}, subject = {Ruthenium Komplexe}, language = {en} }