@phdthesis{Auerhammer2018, author = {Auerhammer, Nina A.}, title = {Energy Transfer and Excitonic Interactions in Conjugated Chromophore Arrangements of Bodipys and Pyrenes and Squaraines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166721}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other. The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred. In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification. The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads. The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations. In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule.}, subject = {Chromophor}, language = {en} } @phdthesis{Halboth2018, author = {Halboth, Florian}, title = {Building behavior and nest climate control in leaf-cutting ants: How environmental cues affect the building responses of workers of \(Atta\) \(vollenweideri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161701}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present work investigates the influence of environmental stimuli on the building behavior of workers of the leaf-cutting ant Atta vollenweideri. It focuses on cues related to the airflow-driven ventilation of their giant underground nests, i.e., air movements and their direction, carbon dioxide concentrations and humidity levels of the nest air. First, it is shown that workers are able to use airflow and its direction as learned orientation cue by performing learning experiments with individual foragers using a classical conditioning paradigm. This ability is expected to allow workers to also navigate inside the nest tunnels using the prevailing airflow directions for orientation, for example during tasks related to nest construction and climate control. Furthermore, the influence of carbon dioxide on the digging behavior of workers is investigated. While elevated CO2 levels hardly affect the digging rate of the ants, workers prefer to excavate at locations with lower concentrations and avoid higher CO2 levels when given a choice. Under natural conditions, shifting their digging activity to soil layers containing lower carbon dioxide levels might help colonies to excavate new or to broaden existing nest openings, if the CO2 concentration in the underground rises. It is also shown that workers preferably transport excavated soil along tunnels containing high CO2 concentrations, when carbon dioxide levels in the underground are elevated as well. In addition, workers prefer to carry soil pellets along outflow tunnels instead of inflow tunnels, at least for high humidity levels of the air. The material transported along tunnels providing outflow of CO2-rich air might be used by workers for the construction of ventilation turrets on top of the nest mound, which is expected to promote the wind-induced ventilation and the removal of carbon dioxide from the underground. The climatic conditions inside the nest tunnels also influence the structural features of the turrets constructed by workers on top the nest. While airflow and humidity have no effect on turret structure, outflow of CO2-rich air from the nest causes workers to construct turrets with additional openings and increased aperture, potentially enhancing the airflow-driven gas exchanges within the nest. Finally, the effect of airflow and ventilation turrets on the gas exchanges in Atta vollenweideri nests is tested experimentally on a physical model of a small nest consisting of a single chamber and two nest tunnels. The carbon dioxide clearance rate from the underground was measured depending on both the presence of airflow in the nest and the structural features of the built turrets. Carbon dioxide is removed faster from the physical nest model when air moves through the nest, confirming the contribution of wind-induced flow inside the nest tunnels to the ventilation of Atta vollenweideri nests. In addition, turrets placed on top of one of the tunnel openings of the nest further enhance the CO2 clearance rate and the effect is positively correlated with turret aperture. Taken together, climatic variables like airflow, carbon dioxide and humidity levels strongly affect the building responses of Atta vollenweideri leaf-cutting ants. Workers use these environmental stimuli as orientation cue in the nest during tasks related to excavation, soil transport and turret construction. Although the effects of these building responses on the microclimatic conditions inside the nest remain elusive so far, the described behaviors are expected to allow ant colonies to restore and maintain a proper nest climate in the underground.}, subject = {Verhalten}, language = {en} } @phdthesis{Bischler2018, author = {Bischler, Thorsten David}, title = {Data mining and software development for RNA-seq-based approaches in bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {RNA sequencing (RNA-seq) has in recent years become the preferred method for gene expression analysis and whole transcriptome annotation. While initial RNA-seq experiments focused on eukaryotic messenger RNAs (mRNAs), which can be purified from the cellular ribonucleic acid (RNA) pool with relative ease, more advanced protocols had to be developed for sequencing of microbial transcriptomes. The resulting RNA-seq data revealed an unexpected complexity of bacterial transcriptomes and the requirement for specific analysis methods, which in many cases is not covered by tools developed for processing of eukaryotic data. The aim of this thesis was the development and application of specific data analysis methods for different RNA-seq-based approaches used to gain insights into transcription and gene regulatory processes in prokaryotes. The differential RNA sequencing (dRNA-seq) approach allows for transcriptional start site (TSS) annotation by differentiating between primary transcripts with a 5'-triphosphate (5'-PPP) and processed transcripts with a 5'-monophosphate (5'-P). This method was applied in combination with an automated TSS annotation tool to generate global trancriptome maps for Escherichia coli (E. coli) and Helicobacter pylori (H. pylori). In the E. coli study we conducted different downstream analyses to gain a deeper understanding of the nature and properties of transcripts in our TSS map. Here, we focused especially on putative antisense RNAs (asRNAs), an RNA class transcribed from the opposite strand of known protein-coding genes with the potential to regulate corresponding sense transcripts. Besides providing a set of putative asRNAs and experimental validation of candidates via Northern analysis, we analyzed and discussed different sources of variation in RNA-seq data. The aim of the H. pylori study was to provide a detailed description of the dRNA-seq approach and its application to a bacterial model organism. It includes information on experimental protocols and requirements for data analysis to generate a genome-wide TSS map. We show how the included TSS can be used to identify and analyze transcriptome and regulatory features and discuss challenges in terms oflibrary preparation protocols, sequencing platforms, and data analysis including manual and automated TSS annotation. The TSS maps and associated transcriptome data from both H. pylori and E. coli were made available for visualization in an easily accessible online browser. Furthermore, a modified version of dRNA-seq was used to identify transcriptome targets of the RNA pyrophosphohydrolase (RppH) in H. pylori. RppH initiates 5'-end-dependent degradation of transcripts by converting the 5'-PPP of primary transcripts to a 5'-P. I developed an analysis method, which uses data from complementary DNA (cDNA) libraries specific for transcripts carrying a 5'-PPP, 5'-P or both, to specifically identify transcripts modified by RppH. For this, the method assessed the 5'-phosphorylation state and cellular concentration of transcripts in rppH deletion in comparison to strains with the intact gene. Several of the identified potential RppH targets were further validated via half-life measurements and quantification of their 5'-phosphorylation state in wild-type and mutant cells. Our findings suggest an important role for RppH in post-transcriptional gene regulationin H. pylori and related organisms. In addition, we applied two RNA-seq -based approaches, RNA immunoprecipitation followed by sequencing (RIP-seq) and cross-linking immunoprecipitation followed by sequencing (CLIP-seq), to identify transcripts bound by Hfq and CsrA, two RNA-binding proteins (RBPs) with an important role in post-transcriptional regulation. For RIP-seq -based identification of CsrA binding regions in Campylobacter jejuni(C. jejuni), we used annotation-based analysis and, in addition, a self-developed peak calling method based on a sliding window approach. Both methods revealed flaA mRNA, encoding the major flagellin, as the main target and functional analysis of identified targets showed a significant enrichment of genes involved in flagella biosynthesis. Further experimental analysis revealed the role of flaA mRNA in post-transcriptional regulation. In comparison to RIP-seq, CLIP-seq allows mapping of RBP binding sites with a higher resolution. To identify these sites an approach called "block-based peak calling" was developed and resulting peaks were used to identify sequence and structural constraints required for interaction of Hfq and CsrA with Salmonella transcripts. Overall, the different RNA-seq-based approaches described in this thesis together with their associated analyis pipelines extended our knowledge on the transcriptional repertoire and modes of post-transcriptional regulation in bacteria. The global TSS maps, including further characterized asRNA candidates, putative RppH targets, and identified RBP interactomes will likely trigger similar global studies in the same or different organisms or will be used as a resource for closer examination of these features.}, subject = {Bakterien}, language = {en} } @phdthesis{MielichSuess2018, author = {Mielich-S{\"u}ß, Benjamin}, title = {Elucidating structural and functional aspects of prokaryotic membrane microdomains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Bacterial functional membrane microdomains (FMMs) are membrane platforms that resemble lipid rafts of eukaryotic cells in certain functional and structural aspects. Lipid rafts are nanometer-sized, dynamic clusters of proteins and lipids in eukaryotic cell membranes that serve as signaling hubs and assembling platforms. Yet, studying these structures can often be hampered by the complexity of a eukaryotic cell. Thus, the analogous structures of prokaryotes are an attractive model to study molecular traits of this type of membrane organization. Similar to eukaryotic lipid rafts, the bacterial FMMs are comprised of polyisoprenoid lipids, scaffold proteins and a distinct set of membrane proteins, involved in signaling or secretion. Investigating bacterial FMMs not only contributes to the understanding of the physiological importance of FMMs in bacteria, but also helps to elucidate general principles of rafts beyond prokaryotes. In this work, a bacterial model organism was used to investigate effects of synthetic overproduction of the raft scaffolding proteins on bacterial physiology. This overexpression causes an unusual stabilization of the FMM-harbored protease FtsH and therefore the proteolytic targets of FtsH are not correctly regulated. Developmental defects and aberrances in shape are the consequence, which in turn negatively affects cell physiology. These findings may be adapted to better understand lipid raft processes in humans, where flotillin upregulation is detected along with development of neurological diseases. Moreover, it was aimed at understanding the FMM-proteome of the human pathogen Staphylococcus aureus. An in-depth quantitative mass-spectrometry analysis reveals adaption of the protein cargo during different conditions, while maintaining a distinct set of core FMM proteins. As a case study, the assembly of the type VII secretion system was shown to be dependent on FMM integrity and more specifically on the activity of the FMM-scaffold flotillin. This secretion system is important for the virulence of this pathogen and its secretion efficiency can be targeted by small molecules that inhibit flotillin activity. This opens new venues for non-conventional antimicrobial compounds to treat staphylococcal infections.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Raab2018, author = {Raab, Annette}, title = {The role of Rgs2 in animal models of affective disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying's of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function.}, subject = {Angst}, language = {en} } @phdthesis{Langhammer2018, author = {Langhammer, Romy}, title = {Metabolomic Imaging for Human Prostate Cancer Detection using MR Spectroscopy at 7T}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165772}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {BACKGROUND. Prostate cancer (PCa) remains a major health concern in men of the Western World. However, we still lack effective diagnostic tools a) for an effective screening with both high sensitivity and specificity, b) to guide biopsies and avoid histology sampling errors and c) to predict tumor aggressiveness in order to avoid overtreatment. Therefore, a more reliable, highly cancer-specific and ideally in vivo approach is needed. The present study has been designed in order to further develop and test the method of "metabolomic imaging" using magnetic resonance spectroscopy (MRS) at 7T to address those challenges. METHODS. Thirty whole prostates with biopsy-proven PCa were in vitro analyzed with a 7T human MR scanner. A voxel grid containing the spectral information was overlaid with the MR image of the middle transverse cross-sectional plane of each case. Subsequent histopathological evaluation of the prostate specimen followed. After the spectral output was processed, all voxels were compared with a metabolomic PCa profile, which had been established within a preliminary study, in order to create a metabolomic map indicating MRS cancer-suspicious regions. Those regions were compared with the histologically identified tumor lesions regarding location. RESULTS. Sixty-one percent of the histological cancer lesions were detected by metabolomic imaging. Among the cases with PCa on the examined slice, 75\% were identified as cancerous. None of the tested features significantly differed between detected and undetected cancer lesions. A defined "Malignancy Index" (MI) significantly differentiated between MRS-suspicious lesions corresponding with a histological cancer lesion and benign lesions (p = 0.006) with an overall accuracy of 70\%. The MI furthermore showed a positive correlation with the Gleason grade (p = 0.021). CONCLUSION. A new approach within PCa diagnostics was developed with spectral analysis including the whole measureable metabolome - referred to as "metabolomics" - rather than focusing on single metabolites. The MI facilitates precise tumor detection and may additionally serve as a marker for tumor aggressiveness. Metabolomic imaging might contribute to a highly cancer-specific in vivo diagnostic protocol for PCa.}, subject = {Prostatakrebs}, language = {en} } @phdthesis{PradaSalcedo2018, author = {Prada Salcedo, Juan Pablo}, title = {Image Processing and other bioinformatic tools for Neurobiology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157721}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neurobiology is widely supported by bioinformatics. Due to the big amount of data generated from the biological side a computational approach is required. This thesis presents four different cases of bioinformatic tools applied to the service of Neurobiology. The first two tools presented belong to the field of image processing. In the first case, we make use of an algorithm based on the wavelet transformation to assess calcium activity events in cultured neurons. We designed an open source tool to assist neurobiology researchers in the analysis of calcium imaging videos. Such analysis is usually done manually which is time consuming and highly subjective. Our tool speeds up the work and offers the possibility of an unbiased detection of the calcium events. Even more important is that our algorithm not only detects the neuron spiking activity but also local spontaneous activity which is normally discarded because it is considered irrelevant. We showed that this activity is determinant in the calcium dynamics in neurons and it is involved in important functions like signal modulation and memory and learning. The second project is a segmentation task. In our case we are interested in segmenting the neuron nuclei in electron microscopy images of c.elegans. Marking these structures is necessary in order to reconstruct the connectome of the organism. C.elegans is a great study case due to the simplicity of its nervous system (only 502 neurons). This worm, despite its simplicity has taught us a lot about neuronal mechanisms. There is still a lot of information we can extract from the c.elegans, therein lies the importance of reconstructing its connectome. There is a current version of the c.elegans connectome but it was done by hand and on a single subject which leaves a big room for errors. By automatizing the segmentation of the electron microscopy images we guarantee an unbiased approach and we will be able to verify the connectome on several subjects. For the third project we moved from image processing applications to biological modeling. Because of the high complexity of even small biological systems it is necessary to analyze them with the help of computational tools. The term in silico was coined to refer to such computational models of biological systems. We designed an in silico model of the TNF (Tumor necrosis factor) ligand and its two principal receptors. This biological system is of high relevance because it is involved in the inflammation process. Inflammation is of most importance as protection mechanism but it can also lead to complicated diseases (e.g. cancer). Chronic inflammation processes can be particularly dangerous in the brain. In order to better understand the dynamics that govern the TNF system we created a model using the BioNetGen language. This is a rule based language that allows one to simulate systems where multiple agents are governed by a single rule. Using our model we characterized the TNF system and hypothesized about the relation of the ligand with each of the two receptors. Our hypotheses can be later used to define drug targets in the system or possible treatments for chronic inflammation or lack of the inflammatory response. The final project deals with the protein folding problem. In our organism proteins are folded all the time, because only in their folded conformation are proteins capable of doing their job (with some very few exceptions). This folding process presents a great challenge for science because it has been shown to be an NP problem. NP means non deterministic Polynomial time problem. This basically means that this kind of problems cannot be efficiently solved. Nevertheless, somehow the body is capable of folding a protein in just milliseconds. This phenomenon puzzles not only biologists but also mathematicians. In mathematics NP problems have been studied for a long time and it is known that given the solution to one NP problem we could solve many of them (i.e. NP-complete problems). If we manage to understand how nature solves the protein folding problem then we might be able to apply this solution to many other problems. Our research intends to contribute to this discussion. Unfortunately, not to explain how nature solves the protein folding problem, but to explain that it does not solve the problem at all. This seems contradictory since I just mentioned that the body folds proteins all the time, but our hypothesis is that the organisms have learned to solve a simplified version of the NP problem. Nature does not solve the protein folding problem in its full complexity. It simply solves a small instance of the problem. An instance which is as simple as a convex optimization problem. We formulate the protein folding problem as an optimization problem to illustrate our claim and present some toy examples to illustrate the formulation. If our hypothesis is true, it means that protein folding is a simple problem. So we just need to understand and model the conditions of the vicinity inside the cell at the moment the folding process occurs. Once we understand this starting conformation and its influence in the folding process we will be able to design treatments for amyloid diseases such as Alzheimer's and Parkinson's. In summary this thesis project contributes to the neurobiology research field from four different fronts. Two are practical contributions with immediate benefits, such as the calcium imaging video analysis tool and the TNF in silico model. The neuron nuclei segmentation is a contribution for the near future. A step towards the full annotation of the c.elegans connectome and later for the reconstruction of the connectome of other species. And finally, the protein folding project is a first impulse to change the way we conceive the protein folding process in nature. We try to point future research in a novel direction, where the amino code is not the most relevant characteristic of the process but the conditions within the cell.}, subject = {Bildverarbeitung}, language = {en} } @misc{Breitenbach2018, author = {Breitenbach, Tim}, title = {Codes of examples for SQH method}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165669}, year = {2018}, abstract = {Code examples for the paper "On the SQH Scheme to Solve Nonsmooth PDE Optimal Control Problems" by Tim Breitenbach and Alfio Borz{\`i} published in the journal "Numerical Functional Analysis and Optimization", in 2019, DOI: 10.1080/01630563.2019.1599911}, language = {en} } @phdthesis{Huegel2018, author = {H{\"u}gel, Markus}, title = {The control of nanomorphology in star-shaped mesogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165321}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Stilbene-based star-shaped mesogens have been synthesized with and without fullerene guests. Thermotropic properties and the mechanism of space-filling in the mesophases of these systems have been examined.}, subject = {Fl{\"u}ssigkristall}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @unpublished{StoyBoehnkeJiménezHallaetal.2018, author = {Stoy, Andreas and B{\"o}hnke, Julian and Jiménez-Halla, J. Oscar C. and Dewhurst, Rian D. and Thiess, Torsten and Braunschweig, Holger}, title = {CO\(_2\) Binding and Splitting by Boron-Boron Multiple Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201802117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164265}, year = {2018}, abstract = {CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction.}, language = {en} } @unpublished{CidHermannRadcliffeetal.2018, author = {Cid, Jessica and Hermann, Alexander and Radcliffe, James E. and Curless, Liam D. and Braunschweig, Holger and Ingleson, Michael J.}, title = {Synthesis of Unsymmetrical Diboron(5) Compounds and Their Conversion to Diboron(5) Cations}, series = {Organometallics}, journal = {Organometallics}, doi = {10.1021/acs.organomet.8b00288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164299}, year = {2018}, abstract = {Reaction of bis-catecholatodiboron-NHC adducts, B\(_2\)Cat\(_2\)(NHC), (NHC = IMe (tetramethylimidazol-2-ylidene), IMes (1,3-dimesitylimidazol-2-ylidene) or IDIPP (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)) with BCl3 results in the replacement of the catecholato group bound to the four coordinate boron with two chlorides to yield diboron(5) Lewis acid-base adducts of formula CatB-BCl\(_2\)(NHC). These compounds are precursors to diboron(5) monocations, accessed by adding AlCl\(_3\) or K[B(C\(_6\)F\(_5\))\(_4\)] as halide abstraction agents in the presence of a Lewis base. The substitution of the chlorides of CatB-BCl\(_2\)(NHC) for hydrides is achieved using Bu\(_3\)SnH and a halide abstracting agent to form 1,1-dihydrodiboron(5) compounds, CatB-BH\(_2\)(NHC). Attempts to generate diboron(4) monocations of formula [CatB-B(Y)(NHC)]\(^+\) (Y = Cl or H) led to the rapid formation of CatBY.}, language = {en} } @unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @article{WernerChenMayaetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Maya, Yoshifumi and Eissler, Christoph and Hirano, Mitsuru and Nose, Naoko and Wakabayashi, Hiroshi and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11120}, issn = {2281-5872}, doi = {10.1038/s41598-018-29509-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164826}, year = {2018}, abstract = {We aimed to explore the impact of ageing on 11C-Hydroxyephedrine (11C-HED) uptake in the healthy rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of (-)-metaraminol as the free base (radiochemical purity >95\%) and a wide range of specific activities (0.2-141.9 GBq/μmol) were prepared. \(^{11}\)C-HED (48.7±9.7MBq, ranged 0.2-60.4μg/kg cold mass) was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED retention index (\%/min) was calculated as myocardial tissue activity at 20-30 min divided by the integral of the blood activity curves. Additionally, the impact of ageing on myocardial 11CHED uptake was investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Herbst2018, author = {Herbst, Nikolas Roman}, title = {Methods and Benchmarks for Auto-Scaling Mechanisms in Elastic Cloud Environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164314}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {A key functionality of cloud systems are automated resource management mechanisms at the infrastructure level. As part of this, elastic scaling of allocated resources is realized by so-called auto-scalers that are supposed to match the current demand in a way that the performance remains stable while resources are efficiently used. The process of rating cloud infrastructure offerings in terms of the quality of their achieved elastic scaling remains undefined. Clear guidance for the selection and configuration of an auto-scaler for a given context is not available. Thus, existing operating solutions are optimized in a highly application specific way and usually kept undisclosed. The common state of practice is the use of simplistic threshold-based approaches. Due to their reactive nature they incur performance degradation during the minutes of provisioning delays. In the literature, a high-number of auto-scalers has been proposed trying to overcome the limitations of reactive mechanisms by employing proactive prediction methods. In this thesis, we identify potentials in automated cloud system resource management and its evaluation methodology. Specifically, we make the following contributions: We propose a descriptive load profile modeling framework together with automated model extraction from recorded traces to enable reproducible workload generation with realistic load intensity variations. The proposed Descartes Load Intensity Model (DLIM) with its Limbo framework provides key functionality to stress and benchmark resource management approaches in a representative and fair manner. We propose a set of intuitive metrics for quantifying timing, stability and accuracy aspects of elasticity. Based on these metrics, we propose a novel approach for benchmarking the elasticity of Infrastructure-as-a-Service (IaaS) cloud platforms independent of the performance exhibited by the provisioned underlying resources. We tackle the challenge of reducing the risk of relying on a single proactive auto-scaler by proposing a new self-aware auto-scaling mechanism, called Chameleon, combining multiple different proactive methods coupled with a reactive fallback mechanism. Chameleon employs on-demand, automated time series-based forecasting methods to predict the arriving load intensity in combination with run-time service demand estimation techniques to calculate the required resource consumption per work unit without the need for a detailed application instrumentation. It can also leverage application knowledge by solving product-form queueing networks used to derive optimized scaling actions. The Chameleon approach is first in resolving conflicts between reactive and proactive scaling decisions in an intelligent way. We are confident that the contributions of this thesis will have a long-term impact on the way cloud resource management approaches are assessed. While this could result in an improved quality of autonomic management algorithms, we see and discuss arising challenges for future research in cloud resource management and its assessment methods: The adoption of containerization on top of virtual machine instances introduces another level of indirection. As a result, the nesting of virtual resources increases resource fragmentation and causes unreliable provisioning delays. Furthermore, virtualized compute resources tend to become more and more inhomogeneous associated with various priorities and trade-offs. Due to DevOps practices, cloud hosted service updates are released with a higher frequency which impacts the dynamics in user behavior.}, subject = {Cloud Computing}, language = {en} } @phdthesis{Lorenz2018, author = {Lorenz, Viola}, title = {Cellular regulation of the hemITAM-coupled platelet receptor C-type lectin-like receptor 2 (CLEC-2): In vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelet aggregation at sites of vascular injury is essential to limit posttraumatic blood loss, but may also cause acute ischemic disease states such as myocardial infarction or stroke. Stable thrombus formation requires a series of molecular events involving platelet receptors and intracellular signal transduction, which contribute to adhesion, activation and aggregation of platelets. In this thesis, the cellular regulation of platelet surface receptors and their involvement in thrombus formation was investigated using genetically modified mice. In the first part of the study, the functional relevance of the immunoreceptor tyrosine-based activation motif (ITAM)-coupled collagen receptor GPVI and of the recently identified hemITAM-bearing C-type lectin-like receptor 2 (CLEC-2) for in vivo thrombus formation was analyzed. Megakaryocyte/ platelet-specific CLEC-2 knock out mice displayed a defective lymphatic development and were protected from occlusive arterial thrombus formation. These phenotypes were more pronounced in mice with a GPVI/CLEC-2 double deficiency. Hemostasis was not compromised in CLEC-2 or GPVI single-deficient animals, as they showed only mildly prolonged tail bleeding times. Combined depletion of both receptors resulted in markedly prolonged bleeding times revealing an unexpected redundant function of the two receptors in hemostasis as well as thrombosis. These findings might have important implications for the development of anti-CLEC-2/ anti-GPVI agents as therapeutics. In the second part, mechanisms underlying the cellular regulation of CLEC-2 were studied. Previous studies have shown that injection of the anti-CLEC-2 antibody INU1 results in complete immunodepletion of platelet CLEC-2 in mice, which is preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. It is demonstrated that INU1-induced CLEC-2 immunodepletion occurs through Src family kinase (SFK)-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with spleen tyrosine kinase (Syk) deficiency, INU1-induced CLEC-2 internalization/ degradation was fully preserved, whereas the associated thrombocytopenia was largely prevented. These results show that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia. Since INU1 IgG induced a pronounced thrombocytopenia, the in vivo effects of monovalent INU1 F(ab) fragments were analyzed. Very unexpectedly, injection of the F(ab) fragments resulted in widespread thrombus formation leading to persistent neurological deficits of the animals. This intravascular thrombus formation is the result of CLEC-2-dependent platelet activation and aggregation. The mechanism underlying the thrombus formation is still unknown and depends potentially on binding of a yet unidentified ligand to F(ab)-opsonized CLEC-2 on platelets.}, subject = {Thrombozytenaggregation}, language = {en} } @phdthesis{Paul2018, author = {Paul, Ursula Sofia D{\´e}sir{\´e}e}, title = {Studies on the Reactivity of Iridium Bis(phosphinite) Pincer Complexes towards Phosphines, Boranes and their Lewis Adducts and on the Reactivity of Cyclic (Alkyl)(Amino) Carbenes and Nickel Complexes thereof}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The first part of the present work provides an insight into the chemistry of iridium complexes bearing the bis(phosphinite) pincer ligand tBuPOCOP (k3-C6H3-1,3-(OPtBu2)2) towards primary boranes and phosphines as well as phosphine-borane Lewis adducts. It furthermore encloses some more detailed studies on their application as catalyst for the dehydrogenative coupling of the latter compounds. The results presented herein can be divided into three sections: I. synthesis and characterization of aryl dihydroborate ligated iridium(III) complexes II. and aryl phosphine coordinated iridium(I) and dihydrido iridium(III) complexes, III. as well as studies on the reactivity of the parent iridium pincer complexes towards BH3 adducts of primary phosphines, which led to first results in the homogeneous catalytic dehydrocoupling of P-aryl substituted phosphine boranes mediated by such iridium pincer complexes. The second part of the present work provides an insight into the chemistry of cyclic (alkyl)(amino) carbene-stabilized nickel complexes as well as it encloses some more detailed studies on the properties and reactivity of the free carbenes itself. The results presented herein can be divided into four sections: I. synthesis and characterization of cyclic (alkyl)(amino) carbene-stabilized nickel carbonyl complexes, II. which allow the evaluation and quantification of the steric and electronic properties of these cyclic (alkyl)(amino) carbenes, III. first studies on the reactivity of these novel nickel complexes, and IV. investigations on C-F and C-H bond activation at the carbene center of cyclic (alkyl)(amino) carbenes.}, subject = {Iridiumkomplexe}, language = {en} } @phdthesis{Knauer2018, author = {Knauer, Kim}, title = {Vegetation Dynamics in West Africa - Spatio-temporal Data Fusion for the Monitoring of Agricultural Expansion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {West Africa is one of the fastest growing regions in the world with annual population growth rates of more than three percent for several countries. Since the 1950s, West Africa experienced a fivefold increase of inhabitants, from 71 to 353 million people in 2015 and it is expected that the region's population will continue to grow to almost 800 million people by the year 2050. This strong trend has and will have serious consequences for food security since agricultural productivity is still on a comparatively low level in most countries of West Africa. In order to compensate for this low productivity, an expansion of agricultural areas is rapidly progressing. The mapping and monitoring of agricultural areas in West Africa is a difficult task even on the basis of remote sensing. The small scale extensive farming practices with a low level of agricultural inputs and mechanization make the delineation of cultivated land from other land cover and land use (LULC) types highly challenging. In addition, the frequent cloud coverage in the region considerably decreases the availability of earth observation datasets. For the accurate mapping of agricultural area in West Africa, high temporal as well as spatial resolution is necessary to delineate the small-sized fields and to obtain data from periods where different LULC types are distinguishable. However, such consistent time series are currently not available for West Africa. Thus, a spatio-temporal data fusion framework was developed in this thesis for the generation of high spatial and temporal resolution time series. Data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) enjoyed increasing popularity during recent years but they have hardly been used for the application on larger scales. In order to make it applicable for this purpose and to increase the input data availability, especially in cloud-prone areas such as West Africa, the ESTARFM framework was developed in this thesis introducing several enhancements. An automatic filling of cloud gaps was included in the framework in order to use even partly cloud-covered Landsat images for the fusion without producing gaps on the output images. In addition, the ESTARFM algorithm was improved to automatically account for regional differences in the heterogeneity of the study region. Further improvements comprise the automation of the time series generation as well as the significant acceleration of the processing speed through parallelization. The performance of the developed ESTARFM framework was tested by fusing an 8-day NDVI time series from Landsat and MODIS data for a focus area of 98,000 km² in the border region between Burkina Faso and Ghana. The results of this test show the capability of the ESTARFM framework to accurately produce high temporal resolution time series while maintaining the spatial detail, even in such a heterogeneous and cloud-prone region. The successfully tested framework was subsequently applied to generate consistent time series as the basis for the mapping of agricultural area in Burkina Faso for the years 2001, 2007, and 2014. In a first step, high temporal (8-day) and high spatial (30 m) resolution NDVI time series for the entire country and the three years were derived with the ESTARFM framework. More than 500 Landsat scenes and 3000 MODIS scenes were automatically processed for this purpose. From the fused ESTARFM NDVI time series, phenological metrics were extracted and together with the single time steps of NDVI served as input for the delineation of rainfed agricultural areas, irrigated agricultural areas and plantations. The classification was conducted with the random forest algorithm at a 30 m spatial resolution for entire Burkina Faso and the three years 2001, 2007, and 2014. For the training and validation of the classifier, a randomly sampled reference dataset was generated from Google Earth images based on expert knowledge of the region. The overall classification accuracies of 92\% (2001), 91\% (2007), and 91\% (2014) indicate the well-functioning of the developed methodology. The resulting maps show an expansion of agricultural area of 91\% from about 61,000 km² in 2001 to 116,900 km² in 2014. While rainfed agricultural areas account for the major part of this increase, irrigated areas and plantations also spread considerably. Especially the expansion of irrigation systems and plantation area can be explained by the promotion through various national and international development projects. The increase of agricultural areas goes in line with the rapid population growth in most of Burkina Faso's provinces which still had available land resources for an expansion of agricultural area. An analysis of the development of agricultural areas in the vicinity of protected areas highlighted the increased human pressure on these reserves. The protection of the remnant habitats for flora and fauna while at the same time improving food security for a rapidly growing population, are the major challenges for the region in the future. The developed ESTARFM framework showed great potential beyond its utilization for the mapping of agricultural area. Other large-scale research that requires a sufficiently high temporal and spatial resolution such as the monitoring of land degradation or the investigation of land surface phenology could greatly benefit from the application of this framework.}, subject = {Fernerkundung}, language = {en} } @phdthesis{Pirner2018, author = {Pirner, Marlies}, title = {Kinetic modelling of gas mixtures}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-080-1 (Print)}, doi = {10.25972/WUP-978-3-95826-081-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161077}, school = {W{\"u}rzburg University Press}, pages = {xi, 222}, year = {2018}, abstract = {This book deals with the kinetic modelling of gas mixtures. It extends the existing literature in mathematics for one species of gas to the case of gasmixtures. This is more realistic in applications. Thepresentedmodel for gas mixtures is proven to be consistentmeaning it satisfies theconservation laws, it admitsanentropy and an equilibriumstate. Furthermore, we can guarantee the existence, uniqueness and positivity of solutions. Moreover, the model is used for different applications, for example inplasma physics, for fluids with a small deviation from equilibrium and in the case of polyatomic gases.}, subject = {Polyatomare Verbindungen}, language = {en} } @unpublished{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {https://doi.org/10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164624}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @book{Glasgow2018, author = {Glasgow, Rupert}, title = {Minimal Selfhood and the Origins of Consciousness}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-078-8 (Print)}, doi = {10.25972/WUP-978-3-95826-079-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157470}, publisher = {W{\"u}rzburg University Press}, pages = {260}, year = {2018}, abstract = {The aim of the book is to ground the logical origins of consciousness in what I have previously called the 'minimal self'. The idea is that elementary forms of consciousness are logically dependent not, as is commonly assumed, on ownership of an anatomical brain or nervous system, but on the intrinsic reflexivity that defines minimal selfhood. The book seeks to trace the logical pathway by which minimal selfhood gives rise to the possible appearance of consciousness. It is argued that in specific circumstances it thus makes sense to ascribe elementary consciousness to certain predatory single-celled organisms such as amoebae and dinoflagellates as well as to some of the simpler animals. Such an argument involves establishing exactly what those specific circumstances are and determining how elementary consciousness differs in nature and scope from its more complex manifestations.}, subject = {Selbst}, language = {en} } @phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Koenig2018, author = {K{\"o}nig, Julia Maria}, title = {Fungal grass endophytes and their dependence on land-use intensity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Plant-associated fungi can affect the plants' interaction with herbivores and other microorganisms. For example, many common forage grasses are infected with Epichlo{\"e} endophytes. The endophytes systemically colonize the aerial parts of the plants. They produce bioprotective alkaloids that can negatively affect insects and livestock feeding on the grasses, and interact with other fungal species which living from the plants' nutrients. Environmental conditions strongly influence Epichlo{\"e} endophytes. Endophyte-mediated effects on herbivores are more pronounced under increased temperatures and the endophytes may benefit from land use in managed grasslands. Under the framework of the large-scale German project "Biodiversity Exploratories", I investigated whether infection rates and alkaloid concentrations of Epichlo{\"e} festucae var. lolii in Lolium perenne (Chapter I) and Epichlo{\"e} endophytes (E. uncinata, E. siegelii) in Festuca pratensis (Chapter II) depend on land use and season. Further I analysed, whether foliar fungal assemblages of L. perenne are affected by the presence of Epichlo{\"e} endophytes (Chapter IV).}, subject = {Endophytische Pilze}, language = {en} } @article{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, volume = {117}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164632}, pages = {18-21}, year = {2018}, abstract = {No abstract available.}, language = {en} } @phdthesis{Koch2018, author = {Koch, Rainer}, title = {Sensor Fusion for Precise Mapping of Transparent and Specular Reflective Objects}, isbn = {978-3-945459-25-6}, doi = {10.25972/OPUS-16346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Almost once a week broadcasts about earthquakes, hurricanes, tsunamis, or forest fires are filling the news. While oneself feels it is hard to watch such news, it is even harder for rescue troops to enter such areas. They need some skills to get a quick overview of the devastated area and find victims. Time is ticking, since the chance for survival shrinks the longer it takes till help is available. To coordinate the teams efficiently, all information needs to be collected at the command center. Therefore, teams investigate the destroyed houses and hollow spaces for victims. Doing so, they never can be sure that the building will not fully collapse while they are inside. Here, rescue robots are welcome helpers, as they are replaceable and make work more secure. Unfortunately, rescue robots are not usable off-the-shelf, yet. There is no doubt, that such a robot has to fulfil essential requirements to successfully accomplish a rescue mission. Apart from the mechanical requirements it has to be able to build a 3D map of the environment. This is essential to navigate through rough terrain and fulfil manipulation tasks (e.g. open doors). To build a map and gather environmental information, robots are equipped with multiple sensors. Since laser scanners produce precise measurements and support a wide scanning range, they are common visual sensors utilized for mapping. Unfortunately, they produce erroneous measurements when scanning transparent (e.g. glass, transparent plastic) or specular reflective objects (e.g. mirror, shiny metal). It is understood that such objects can be everywhere and a pre-manipulation to prevent their influences is impossible. Using additional sensors also bear risks. The problem is that these objects are occasionally visible, based on the incident angle of the laser beam, the surface, and the type of object. Hence, for transparent objects, measurements might result from the object surface or objects behind it. For specular reflective objects, measurements might result from the object surface or a mirrored object. These mirrored objects are illustrated behind the surface which is wrong. To obtain a precise map, the surfaces need to be recognised and mapped reliably. Otherwise, the robot navigates into it and crashes. Further, points behind the surface should be identified and treated based on the object type. Points behind a transparent surface should remain as they represent real objects. In contrast, Points behind a specular reflective surface should be erased. To do so, the object type needs to be classified. Unfortunately, none of the current approaches is capable to fulfil these requirements. Therefore, the following thesis addresses this problem to detect transparent and specular reflective objects and to identify their influences. To give the reader a start up, the first chapters describe: the theoretical background concerning propagation of light; sensor systems applied for range measurements; mapping approaches used in this work; and the state-of-the-art concerning detection and identification of transparent and specular reflective objects. Afterwards, the Reflection-Identification-Approach, which is the core of subject thesis is presented. It describes 2D and a 3D implementation to detect and classify such objects. Both are available as ROS-nodes. In the next chapter, various experiments demonstrate the applicability and reliability of these nodes. It proves that transparent and specular reflective objects can be detected and classified. Therefore, a Pre- and Post-Filter module is required in 2D. In 3D, classification is possible solely with the Pre-Filter. This is due to the higher amount of measurements. An example shows that an updatable mapping module allows the robot navigation to rely on refined maps. Otherwise, two individual maps are build which require a fusion afterwards. Finally, the last chapter summarizes the results and proposes suggestions for future work.}, subject = {laserscanner}, language = {en} } @phdthesis{Kropf2018, author = {Kropf, Jan}, title = {The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.}, subject = {Voltage-Clamp-Methode}, language = {en} } @phdthesis{Collenburg2018, author = {Collenburg, Lena}, title = {The Role of Ceramides and Sphingomyelinases for Dynamic Membrane Processes in T Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Previous work of our group has established a role of sphingomyelinases in the regulation of T cell responses to TCR or pathogen stimulation, and this became particularly evident at the level of actin cytoskeletal dynamics. The formation of lipid membrane microdomains is crucial for receptor clustering and signal induction, and therefore, ceramide accumulation by membrane sphingomyelin breakdown is needed for signalling- complex-assembly. Pathogen-induced overshooting of SMase activation substantially impacted the formation of membrane protrusions, with T cell spreading as well as a front/rear polarisation upon CD3/CD28 co-stimulation [103]. On the other hand, NSM activation is part of the physiological TCR signal [67], indicating that a spatiotemporally balanced NSM activation is crucial for its physiological function. It involves actin cytoskeletal reorganisation and T cell polarisation. These two functions are also of central importance in directional T cell migration and motility in tissues. This thesis aims on defining the role of NSM in compartmentalisation of the T cell membrane in polarisation and migration. Therefore, functional studies on the impact of NSM activity in these processes had to be complemented by the development of tools to study ceramide compartmentalisation in living T cells.}, subject = {Ceramides}, language = {en} } @article{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans}, series = {Clinical and Translational Imaging}, journal = {Clinical and Translational Imaging}, issn = {2281-5872}, doi = {10.1007/s40336-018-0289-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163628}, year = {2018}, abstract = {Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Bury2018, author = {Bury, Susanne}, title = {Molekularbiologische Untersuchungen der antagonistischen Effekte des probiotischen \(Escherichia\) \(coli\) Stamms Nissle 1917 auf Shiga-Toxin produzierende \(Escherichia\) \(coli\) St{\"a}mme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163401}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Shiga toxin produzierende E. coli (STEC) stellen mit einer Infektionsdosis von gerade einmal 100 Bakterien ein großes Risiko f{\"u}r unsere Gesundheit dar. Betroffene Patienten k{\"o}nnen milde Krankheitssymptome wie w{\"a}ssrigen Durchfall aufweisen, welcher sich allerdings zu blutigem Durchfall oder dem h{\"a}molytisch ur{\"a}mischen Syndrom (HUS) weiterentwickeln kann. Die Ursache f{\"u}r das Krankheitsbild ist das zytotoxische Protein Shiga-Toxin (Stx), welches von STEC St{\"a}mmen produziert wird, eukaryotischen Zellen angreift und den apoptotischen Zelltod induziert. Es konnte gezeigt werden, dass infizierte Patienten in ihrem Krankheitsverlauf stark variieren, was unter anderem auf die Zusammensetzung ihrer Mikrobiota zur{\"u}ckzuf{\"u}hren sein k{\"o}nnte. Diesbez{\"u}glich k{\"o}nnen zum Beispiel einige Bakterien bereits die Darmbesiedlung von STEC St{\"a}mmen unterbinden, wohingegen andere die Toxin Produktion der pathogenen St{\"a}mme beeinflussen und wieder andere von den stx tragenden Phagen infiziert werden k{\"o}nnen und daraufhin selbst zu Toxin produzierenden St{\"a}mmen werden. Da die genetischen Informationen f{\"u}r das Toxin auf einem Prophagen im Genom der STEC St{\"a}mme kodiert ist, f{\"u}hrt eine Antibiotika Behandlung von infizierten Patienten zwar zum Tod der Bakterien, hat allerdings auch einen Wechsel vom lysogenen zum lytischen Phagen Zyklus und damit einen enormen Anstieg an freigesetztem Stx zur Folge. In den letzten Jahrzehnten kam es immer wieder zu Epidemien mit STEC St{\"a}mmen, welche auch einige Todesopfer forderten. Die Behandlung von Patienten erfolgt auf Grund von mangelnden Behandlungsm{\"o}glichkeiten meist nur symptomatisch, weswegen neue Strategien f{\"u}r die Behandlung einer STEC Infektion dringend ben{\"o}tigt werden. Der probiotische E. coli Stamm Nissle 1917 (EcN) z{\"a}hlt bereits seit mehr als 100 Jahren als Medikament f{\"u}r Behandlungen von Darmentz{\"u}ndungen. In vitro und in vivo Studien mit dem probiotischen Stamm und STEC St{\"a}mmen konnten zeigen, dass EcN die Produktion von Stx unterdr{\"u}ckt und gleichzeitig die STEC Zellzahl reduziert. Diese Ergebnisse waren der Anlass f{\"u}r diese Studie in der die Auswirkungen von EcN auf STEC St{\"a}mme genauer untersucht wurden, um eine m{\"o}gliche Behandlung von STEC Infektionen mit dem Probiotikum zu gew{\"a}hrleisten. Eines der Hauptziele dieser Studie war es, herauszufinden, ob EcN von stx-Phagen infiziert werden kann und damit selbst zu einem Toxin Produzenten wird. In diesem Falle w{\"a}re eine Behandlung mit dem E. coli Stamm ausgeschlossen, da es den Krankheitsverlauf verschlimmern k{\"o}nnte. Verschiedene experimentelle Ans{\"a}tze in denen versucht wurde den YaeT stx-Phagen Rezeptor tragenden Stamm zu infizieren schlugen fehl. Weder mittels PCR Analysen, Phagen Plaque Assays oder der Phagen Anreicherung konnte eine Lyse oder eine Prophagen Integration nachgewiesen werden. Transkriptom Analysen konnten zeigen, dass Gene eines lambdoiden Prophagen in EcN in Anwesenheit von stx-Phagen stark reguliert sind. Auch andere E. coli St{\"a}mme, welche sich ebenfalls durch eine Resistenz gegen{\"u}ber einer stx-Phagen Infektion auswiesen, wurden positiv auf lambdoide Prophagen untersucht. Einzig dem stx-Phagen sensitiven K-12 Stamm MG1655 fehlt ein kompletter lambdoider Prophage, weswegen die Vermutung nahe liegt, dass ein intakter lambdoider Prophage vor der Superinfektion mit stx-Phagen sch{\"u}tzten kann. In weiteren Experimenten wurde der Einfluss der Mikrozin-negativen EcN Mutante SK22D auf STEC St{\"a}mme untersucht. Es konnte gezeigt werden, dass SK22D nicht nur die Produktion des zytotoxischen Proteins unterdr{\"u}ckt, sondern auch mit der Produktion der stx-Phagen von allen getesteten STEC St{\"a}mmen interferiert (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- und zwei O104:H4 Isolate vom STEC Ausbruch in Deutschland im Jahr 2011). Transwell Studien konnten zeigen, dass der Faktor, welcher die Transkription des Prophagen unterdr{\"u}ckt, von SK22D sekretiert wird. Die Ergebnisse lassen vermuten, dass die Pr{\"a}senz von SK22D den lysogenen Zustand des Prophagen st{\"u}tzt und somit den lytischen Zyklus unterdr{\"u}ckt. Da stx-Phagen eine große Gefahr darstellen andere E. coli St{\"a}mme zu infizieren, haben wir uns in weiteren Studien dem Einfluss von EcN auf isolierte Phagen gewidmet. Die Kultivierungsexperimente von EcN mit Phagen zeigten, dass der probiotische Stamm in der Lage war die stx-Phagen in ihrer Effizienz der Lyse des K 12 Stammes MG1655 von~ 1e7 pfus/ml auf 0 pfus/ml nach einer 44 st{\"u}ndigen Inkubation zu inaktivieren. Diese Inaktivierung konnte auf die Aktivit{\"a}t eines hitzestabilen Proteins, welches in der station{\"a}ren Wachstumsphase synthetisiert wird, zur{\"u}ckgef{\"u}hrt werden. Studien welche einen Anstieg der Biofilmmasse zur Folge hatten zeigten eine gesteigerte Effizienz in der Phagen Inaktivierung, weswegen Komponenten des Biofilms m{\"o}glicherweise die Phagen Inaktivierung herbeif{\"u}hren. Neben dem direkten Einfluss auf die Phagen wurde auch ein Schutzeffekt von SK22D gegen{\"u}ber dem stx-Phagen empf{\"a}nglichen K 12 St{\"a}mmen untersucht. Lysogene K 12 St{\"a}mme zeichneten sich durch eine enorme Stx und stx-Phagen Produktion aus. Die Pr{\"a}senz von SK22D konnte den K 12 vermittelten Anstieg der pathogenen Faktoren unterbinden. Transwell Ergebnisse und Kinetik Studien lassen vermuten, dass SK22D eher die Phagen Infektion von K-12 St{\"a}mmen unterbindet als die Lyse von lysogenen K-12 St{\"a}mmen zu st{\"o}ren. Eine m{\"o}gliche Erkl{\"a}rung f{\"u}r den Schutz der K-12 St{\"a}mme vor einer stx-Phagen Infektion k{\"o}nnte darin liegen, dass die K-12 St{\"a}mme innerhalb der SK22D Kultur wachsen und dadurch von den infekti{\"o}sen Phagen abgeschirmt werden. Zusammenfassend konnte in dieser Studie gezeigt werden, dass der probiotische Stamm EcN sowohl die Lyse von STEC St{\"a}mmen unterdr{\"u}ckt als auch die infekti{\"o}sen stx-Phagen inaktiviert und sensitive E. coli St{\"a}mme vor der Phagen Infektion sch{\"u}tzen kann. Diese Ergebnisse sollten als Grundlage f{\"u}r in vivo Studien herangezogen werden, um eine m{\"o}gliche Behandlung von STEC infizierten Patienten mit dem Probiotikum zu gew{\"a}hrleisten.}, subject = {EHEC}, language = {en} } @phdthesis{Balasubramanian2018, author = {Balasubramanian, Srikkanth}, title = {Novel anti-infectives against pathogenic bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Marine sponge-associated actinomycetes are reservoirs of diverse natural products with novel biological activities. Their antibiotic potential has been well explored against a range of Gram positive and negative bacteria. However, not much is known about their anti-infective or anti-virulence potential against human pathogens. This Ph.D. project aimed to investigate the anti-infective (anti-Shiga toxin and anti-biofilm) potential of sponge-derived actinobacteria through identification and isolation of their bioactive metabolites produced and characterizing their mechanism of action by transcriptomics. This thesis is divided into three studies with the overall objective of exploring the anti-infective efficacy of actinomycetes-derived extracts and compound(s) that could possibly be used as future therapeutics. The first study deals with investigation on the anti-Shiga toxin effects of sponge-associated actinomycetes. Diarrheal infections pose a huge burden in several developing and developed countries. Diarrheal outbreaks caused by Enterohemorrhagic Escherichia coli (EHEC) could lead to life-threatening complications like gastroenteritis and haemolytic uremic syndrome (HUS) if left untreated. Shiga toxin (Stx) produced by EHEC is a major virulence factor that negatively affects the human cells, leading them to death via apoptosis. Antibiotics are not prescribed against EHEC infections since they may enhance the risk of development of HUS by inducing the production and release of Stx from disintegrating bacteria and thereby, worsening the complications. Therefore, an effective drug that blocks the Stx production without affecting the growth needs to be urgently developed. In this study, the inhibitory effects of 194 extracts and several compounds originating from a collection of marine sponge-derived actinomycetes were evaluated against the Stx production in EHEC strain EDL933 with the aid of Ridascreen® Verotoxin ELISA assay kit. It was found that treatment with the extracts did not lead to significant reduction in Stx production. However, strepthonium A isolated from the culture of Streptomyces sp. SBT345 (previously cultivated from the Mediterranean sponge Agelas oroides) reduced the Stx production (at 80 μM concentration) in EHEC strain EDL933 without affecting the bacterial growth. The structure of strepthonium A was resolved by spectroscopic analyses including 1D and 2D-NMR, as well as ESI-HRMS and ESI-HRMS2 experiments. This demonstrated the possible application of strepthonium A in restraining EHEC infections. VI In the second study, the effect of marine sponge-associated actinomycetes on biofilm formation of staphylococci was assessed. Medical devices such as contact lenses, metallic implants, catheters, pacemakers etc. are ideal ecological niches for formation of bacterial biofilms, which thereby lead to device-related infections. Bacteria in biofilms are multiple fold more tolerant to the host immune responses and conventional antibiotics, and hence are hard-to-treat. Here, the anti-biofilm potential of an organic extract derived from liquid fermentation of Streptomyces sp. SBT343 (previously cultivated from the Mediterranean sponge Petrosia ficiformis) was reported. Results obtained in vitro demonstrated its anti-biofilm (against staphylococci) and non-toxic nature (against mouse macrophage (J774.1), fibroblast (NIH/3T3) and human corneal epithelial cell lines). Interestingly, SBT343 extract could inhibit staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces without affecting the bacterial growth. High Resolution Fourier Transform Mass Spectrometry (HR-MS) analysis indicated the complexity and the chemical diversity of components present in the extract. Preliminary physio-chemical characterization unmasked the heat stable and non-proteinaceous nature of the active component(s) in the extract. Finally, fractionation experiments revealed that the biological activity was due to synergistic effects of multiple components present in the extract. In the third study, anti-biofilm screening of 50 organic extracts generated from solid and liquid fermentation of 25 different previously characterized sponge-derived actinomycetes was carried out. This led to identification of the anti-biofilm organic extract derived from the solid culture of Streptomyces sp. SBT348 (previously cultivated from the Mediterranean sponge Petrosia ficiformis). Bioassay-guided fractionation was employed to identify the active fraction Fr 7 in the SBT348 crude extract. Further purification with semi-preparative HPLC led to isolation of the bioactive SKC1, SKC2, SKC3, SKC4 and SKC5 sub-fractions. The most active sub-fraction SKC3 was found to be a pure compound having BIC90 and MIC values of 3.95 μg/ml and 31.25 μg/ml against S. epidermidis RP62A. SKC3 had no apparent toxicity in vitro on cell lines and in vivo on the greater wax moth Galleria melonella larvae. SKC3 was stable to heat and enzymatic treatments indicating its non-proteinaceous nature. HR-MS analysis revealed the mass of SKC3 to be 1258.3 Da. Structure elucidation of SKC3 with the aid of 1D and 2D-NMR data is currently under investigation. Further, to obtain insights into the mode of action of SKC3 on S. epidermidis RP62A, RNA sequencing was done. Transcriptome data revealed that SKC3 was recognized by RP62A at 20 min and SKC3 negatively interfered with the central metabolism of staphylococci at 3 h. Taken VII together, these findings suggest that SKC3 could be a lead structure for development of new anti-staphylococcal drugs. Overall, the results obtained from this work underscore the anti-infective attributes of actinomycetes consortia associated with marine sponges, and their applications in natural product drug discovery programs.}, subject = {Marine sponges}, language = {en} } @phdthesis{Becker2018, author = {Becker, Martin}, title = {Understanding Human Navigation using Bayesian Hypothesis Comparison}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk "short distances" before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly". For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain: i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior.}, subject = {Bayes-Verfahren}, language = {en} } @phdthesis{Jung2018, author = {Jung, Jamin}, title = {Precise timing of the trypanosome cell division cycle}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114932}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {African trypanosomes are the causative agents of fatal diseases in humans and livestock. Trypanosomes show a complex lifecycle and shuttle between the transmitting vector, the tsetse (Glossina spec.), and the mammalian host. As a result of this the parasite undergoes tremendous changes in morphology and metabolism to adapt to the different living environments. The two best-studied lifecycle stages are the procyclic forms (PCF) that live in the tsetse fly and the proliferative bloodstream form (BSF) that resides in the mammalian blood. The most conspicuous weapon that trypanosomes use to evade the host immune attack is a dense layer of a single protein type, the variant surface glycoprotein (VSG), which shields the entire cell surface. Immune evasion required high rates of surface membrane turnover and surface coat recycling. Trypanosomes show highly polarised cell architecture with all major eukaryotic organelles (endoplasmic reticulum, Golgi apparatus, endosomal apparatus, lysosome, mitochondrion and peroxisome-like glycosomes) generally present in single copy. Furthermore, trypanosomes possess a single flagellum, which is important not only for cellular motility but also for cell division. How the duplication of all these cellular components is coordinated in order to progresss through the cell division cycle is poorly understood. We used trypanosomes as a model organism due to the relative simplicity and the polarised nature of their cell architecture and determined the duplication of all their compartments. This was only possible due to a new synchronisation approach developed during this project. In the first part of the thesis a precise temporal map of the cell division cycle of the BSF T. brucei cell division cycle was generated. By the use of well-described morphological markers (K/N status, new flagellum outgrowth and DNA synthesis) the position of individual cells was determined with high temporal resolution; this allowed us for the first time to synchronise a cell population in silico without affecting the naturally asynchronous growth. In the second part of the thesis we used this tool to follow duplication events of the Major organelles during progression through the cell division cycle. We precisely determined the time points of organelle duplication and found that it is ordered in trypanosomes. Furthermore we found that BSF T. brucei cells do not grow continuously, cell size start to increase rapidly, during a short period of time, late in the cell division cycle. We speculate that the initiation of cell volume increase is temporally separated from the formation of all secretory organelles in order to ensure maintenance of the protective coat, which must remain intact at all times in order for BSF trypanosomes to be able to evade the host immune response.}, subject = {Zellteilung}, language = {en} } @article{WernerSolnesJavadietal.2018, author = {Werner, Rudolf and Solnes, Lilja and Javadi, Mehrbod and Weich, Alexander and Gorin, Michael and Pienta, Kenneth and Higuchi, Takahiro and Buck, Andreas and Pomper, Martin and Rowe, Steven and Lapa, Constantin}, title = {SSTR-RADS Version 1.0 as a Reporting System for SSTR-PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161298}, year = {2018}, abstract = {Reliable standards and criteria for somatostatin receptor (SSTR) positron emission tomography (PET) are still lacking. We herein propose a structured reporting system on a 5-point scale for SSTR-PET imaging, titled SSTR-RADS version 1.0, which might serve as a standardized assessment for both diagnosis and treatment planning in neuroendocrine tumors (NET). SSTR-RADS could guide the imaging specialist in interpreting SSTR-PET scans, facilitate communication with the referring clinician so that appropriate work-up for equivocal findings is pursued, and serve as a reliable tool for patient selection for planned Peptide Receptor Radionuclide Therapy.}, subject = {Standardisierung}, language = {en} } @phdthesis{Bargul2018, author = {Bargul, Joel Ltilitan}, title = {Characterization of motility and erythrocyte adherence as virulence factors in African trypanosomes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Pathogens causing African animal trypanosomiasis (AAT), the major livestock disease in sub-Saharan Africa, belong to the salivarian group of the African trypanosomes, which are transmitted by the bite of the tsetse fly (Glossina spec.). T. vivax, T. congolense and T. brucei brucei are major pathogens of cattle in particular, causing nagana, with dramatic socio-economic consequences for the affected regions. The parasites additionally have a huge reservoir of other livestock and wild animal hosts. T. brucei, the species which also includes the subspecies pathogenic to humans causing sleeping sickness, has been extensively studied as the cultivatable model trypanosome. But less is known about the other salivarian species, which are not routinely held in culture, if at all possible. A hallmark of trypanosomal lifestyle is the protozoan flagellates incessant motility, which enables them to populate an enormous range of habitats in very diverse hosts. We were now able to characterize, for the first time with high spatiotemporal resolution microscopy, the swimming behaviour and mechanism of the most relevant salivarian species isolated directly from blood. We show the influence of viscosity on the motility of bloodstream form (BSF) cells and simulate their movement between erythrocytes, giving a clear picture of how all analyzed species move under varying environmental conditions. We show that although the basic mechanism of flagellar motility applies to all analyzed species, there are clear morphological differences that produce different reactions to the physical environment. We could define specific conditions for highly increased swimming persistence and speed for compared to the behaviour in standard culture. These results have important implications for the parasites survival strategies in the host, e.g. regarding the capacity for antibody clearance. Although we show all species to effectively remove antibodies from the cell surface, T. congolense differed markedly in its motility behaviour, which gives rise to interesting questions about this species behaviour in the bloodstream. Most of the T. congolense parasites (and to a lesser extent T. vivax) adhere to sheep erythrocytes. Further in vitro studies showed that T. congolense and T. vivax adhered to rabbit, goat, pig and cattle erythrocytes- but binding behaviour was absent in murine blood. Notably, both T. brucei and T. evansi lacked adherence to all studied host erythrocytes. Generally, attachment to blood cells caused reduction of swimming velocities. Judging from its cell architecture, as well as the motility studies in higher media viscosity and in micropillar arrays, T. congolense is not adapted to swim at high speeds in the mammalian bloodstream. Low swimming speeds could allow these purely intravascular parasites to remain bound to the host erythrocytes.}, subject = {Motili{\"a}t}, language = {en} } @article{WernerKobayashiJavadietal.2018, author = {Werner, Rudolf A. and Kobayashi, Ryohei and Javadi, Mehrbod Som and K{\"o}ck, Zoe and Wakabayashi, Hiroshi and Unterecker, Stefan and Nakajima, Kenichi and Lapa, Constantin and Menke, Andreas and Higuchi, Takahiro}, title = {Impact of Novel Antidepressants on Cardiac Metaiodobenzylguanidine (mIBG) Uptake: Experimental Studies in SK-N-SH Cells and Healthy Rabbits}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.117.206045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161280}, year = {2018}, abstract = {Background: \(^{123}\)I-metaiodobenzylguanidine (mIBG) provides independent prognostic value for risk stratification among heart failure patients, but the use of concomitant medication should not impact its quantitative information. We aimed to evaluate the four most-prescribed antidepressants currently used as a first‑line treatment for patients with major depressive disorder (MDD) and their potential on altering mIBG imaging results. Methods: The inhibition effect of four different types of antidepressants (desipramine, escitalopram, venlafaxine and bupropion) for MDD treatment on \(^{131}\)I-mIBG uptake was assessed by in-vitro cell uptake assays using human neuroblastoma SK-N-SH cells. The half maximal inhibitory concentration (IC50) of tracer uptake was determined from dose-response curves. To evaluate the effects of IV pretreatment with desipramine (1.5 mg/kg) and escitalopram (2.5, 15 mg/kg) on mIBG cardiac uptake, in-vivo planar 123I-mIBG scans in healthy New Zealand White Rabbits were conducted. Results: The IC50 values of desipramine, escitalopram, venlafaxine and bupropion on \(^{131}\)I-mIBG cellular uptake were 11.9 nM, 7.5 μM, 4.92 μM, and 12.9 μM, respectively. At the maximum serum concentration (Cmax, as derived by previous clinical trials), the inhibition rates of 131I-mIBG uptake were 90.6 \% for desipramine, 25.5 \% for venlafaxine, 11.7 \% for bupropion and 0.72 \% for escitalopram. A low inhibition rate for escitalopram in the cell uptake study triggered investigation of an in-vivo rabbit model: with dosage considerably higher than clinical practice, the non-inhibitory effect of escitalopram was confirmed. Furthermore, pretreatment with desipramine led to a marked reduction of cardiac 123I-mIBG uptake. Conclusions: In the present in-vitro binding assay and in-vivo rabbit study, the selective-serotonin reuptake inhibitor escitalopram had no major impact on neuronal cardiac mIBG uptake within therapeutic dose ranges, while other types of first-line antidepressants for MDD treatment led to a significant decrease. These preliminary results warrant further confirmatory clinical trials regarding the reliability of cardiac mIBG imaging, in particular, if the patient's neuropsychiatric status would not tolerate withdrawal of a potentially norepinephrine interfering antidepressant.}, subject = {Antidepressants}, language = {en} } @unpublished{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161103}, year = {2018}, abstract = {No abstract available.}, subject = {Virchow Node}, language = {en} } @phdthesis{Wohlfart2018, author = {Wohlfart, Christian}, title = {The Yellow River Basin in Transition - Multi-faceted Land Cover Change Analysis in the Yellow River Basin in the Context of Global Change Using Multi-sensor Remote Sensing Imagery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {As a cradle of ancient Chinese civilization, the Yellow River Basin has a very long human-environment interrelationship, where early anthropogenic activities re- sulted in large scale landscape modifications. Today, the impact of this relationship has intensified further as the basin plays a vital role for China's continued economic development. It is one of the most densely-populated, fastest growing, and most dynamic regions of China with abundant natural and environmental resources providing a livelihood for almost 190 million people. Triggered by fundamental economic reforms, the basin has witnessed a spectacular economic boom during the last decades and can be considered as an exemplary blueprint region for contemporary dynamic Global Change processes occurring throughout the country, which is currently transitioning from an agrarian-dominated economy into a modern urbanized society. However, this resourcesdemanding growth has led to profound land use changes with adverse effects on the Yellow River social-ecological systems, where complex challenges arise threatening a long-term sustainable development. Consistent and continuous remote sensing-based monitoring of recent and past land cover and land use change is a fundamental requirement to mitigate the adverse impacts of Global Change processes. Nowadays, technical advancement and the multitude of available satellite sensors, in combination with the opening of data archives, allow the creation of new research perspectives in regional land cover applications over heterogeneous landscapes at large spatial scales. Despite the urgent need to better understand the prevailing dynamics and underlying factors influencing the current processes, detailed regional specific land cover data and change information are surprisingly absent for this region. In view of the noted research gaps and contemporary developments, three major objectives are defined in this thesis. First (i), the current and most pressing social-ecological challenges are elaborated and policy and management instruments towards more sustainability are discussed. Second (ii), this thesis provides new and improved insights on the current land cover state and dynamics of the entire Yellow River Basin. Finally (iii), the most dominant processes related to mining, agriculture, forest, and urban dynamics are determined on finer spatial and temporal scales. The complex and manifold problems and challenges that result from long-term abuse of the water and land resources in the basin have been underpinned by policy choices, cultural attitude, and institutions that have evolved over centuries in China. The tremendous economic growth that has been mainly achieved by extracting water and exploiting land resources in a rigorous, but unsustainable manner, might not only offset the economic benefits, but could also foster social unrest. Since the early emergence of the first Chinese dynasties, flooding was considered historically as a primary issue in river management and major achievements have been made to tame the wild nature of the Yellow River. Whereas flooding is therefore largely now under control, new environmental and social problems have evolved, including soil and water pollution, ecological degradation, biodiversity decline, and food security, all being further aggravated by anthropogenic climate change. To resolve the contemporary and complex challenges, many individual environmental laws and regulations have been enacted by various Chinese ministries. However, these policies often pursue different, often contradictory goals, are too general to tackle specific problems and are usually implemented by a strong top-down approach. Recently, more flexible economic and market-based incentives (pricing, tradable permits, investments) have been successfully adopted, which are specifically tailored to the respective needs, shifting now away from the pure command and regulating instruments. One way towards a more holistic and integrated river basin management could be the establishment of a common platform (e.g. a Geographical Information System) for data handling and sharing, possibly operated by the Yellow River Basin Conservancy Commission (YRCC), where available spatial data, statistical information and in-situ measures are coalesced, on which sustainable decision-making could be based. So far, the collected data is hardly accessible, fragmented, inconsistent, or outdated. The first step to address the absence and lack of consistent and spatially up-to-date information for the entire basin capturing the heterogeneous landscape conditions was taken up in this thesis. Land cover characteristics and dynamics were derived from the last decade for the years 2003 and 2013, based on optical medium-resolution hightemporal MODIS Normalized Differenced Vegetation Index (NDVI) time series at 250 m. To minimize the inherent influence of atmospheric and geometric interferences found in raw high temporal data, the applied adaptive Savitzky-Golay filter successfully smoothed the time series and substantially reduced noise. Based on the smoothed time series data, a large variety of intra-annual phenology metrics as well as spectral and multispectral annual statistics were derived, which served as input variables for random forest (RF) classifiers. High quality reference data sets were derived from very high resolution imagery for each year independently of which 70 \% trained the RF models. The accuracy assessments for all regionally specific defined thematic classes were based on the remaining 30 \% reference data split and yielded overall accuracies of 87 \% and 84 \% for 2003 and 2013, respectively. The first regional adapted Yellow River Land Cover Products (YRB LC) depict the detail spatial extent and distribution of the current land cover status and dynamics. The novel products overall differentiate overall 18 land cover and use classes, including classes of natural vegetation (terrestrial and aquatic), cultivated classes, mosaic classes, non-vegetated, and artificial classes, which are not presented in previous land cover studies so far. Building on this, an extended multi-faceted land cover analysis on the most prominent land cover change types at finer spatial and temporal scales provides a better and more detailed picture of the Yellow River Basin dynamics. Precise spatio-temporal products about mining, agriculture, forest, and urban areas were examined from long-trem Landsat satellite time series monitored at annual scales to capture the rapid rate of change in four selected focus regions. All archived Landsat images between 2000 and 2015 were used to derive spatially continuous spectral-temporal, multi-spectral, and textural metrics. For each thematic region and year RF models were built, trained and tested based on a stablepixels reference data set. The automated adaptive signature (AASG) algorithm identifies those pixels that did not change between the investigated time periods to generate a mono-temporal reference stable-pixels data set to keep manual sampling requirements to a minimum level. Derived results gained high accuracies ranging from 88 \% to 98 \%. Throughout the basin, afforestation on the Central Loess Plateau and urban sprawl are identified as most prominent drivers of land cover change, whereas agricultural land remained stable, only showing local small-scale dynamics. Mining operations started in 2004 on the Qinghai-Tibet Plateau, which resulted in a substantial loss of pristine alpine meadows and wetlands. In this thesis, a novel and unique regional specific view of current and past land cover characteristics in a complex and heterogeneous landscape was presented by using a multi-source remote sensing approach. The delineated products hold great potential for various model and management applications. They could serve as valuable components for effective and sustainable land and water management to adapt and mitigate the predicted consequences of Global Change processes.}, subject = {Fernerkundung}, language = {en} } @phdthesis{Fekete2018, author = {Fekete, Alexander}, title = {Urban Disaster Resilience and Critical Infrastructure}, isbn = {978-3-946573-13-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163251}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {89}, year = {2018}, abstract = {Urban areas are population, culture and infrastructure concentration points. Electricity blackouts or interruptions of water supply severely affect people when happening unexpected and at large scale. Interruptions of such infrastructure supply services alone have the potential to trigger crises. But when happening in concert with or as a secondary effect of an earthquake, for example, the crisis situation is often aggravated. This is the case for any country, but it has been observed that even highly industrialised countries face severe risks when their degree of acquired dependency on services of what is termed Critical Infrastructure results in even bigger losses when occurring unexpectedly in a setting that usually has high reliability of services.}, subject = {Risikomanagement}, language = {en} } @phdthesis{Candemir2018, author = {Candemir, Esin}, title = {Involvement of neuronal nitric oxide synthase (NOS-I) PDZ interactions in neuropsychiatric disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151194}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neuronal nitric oxide (NO) synthase (NOS-I) and its adaptor protein (NOS1AP) have been repeatedly and consistently associated with neuropsychiatric disorders in several genetic association and linkage studies, as well as functional studies. NOS-I has an extended PDZ domain which enables it to interact with postsynaptic density protein 95 (PSD-95) bringing NOS-I in close proximity to NMDA receptors. This interaction allows NMDA receptor activity dependent calcium-influx to activate NOS-I, linking NO synthesis to regulation of glutamatergic signaling pathways. NOS1AP is a PDZ-domain ligand of NOS-I and has been proposed to compete with PSD-95 for NOS-I interaction. Studies performed on post-mortem brain tissues have shown increased expression of NOS1AP in patients with schizophrenia and bipolar disorder, suggesting that increased NOS-I/NOS1AP interactions might be involved in neuropsychiatric disorders possibly through disruption of NOS-I PDZ interactions. Therefore, I have investigated the involvement of NOS-I in different endophenotypes of neuropsychiatric disorders by targeting its specific PDZ interactions in vitro and in vivo. To this end, I used recombinant adeno-associated virus (rAAV) vectors expressing NOS1AP isoforms/domains (NOS1AP-L: full length NOS1AP; NOS1AP-LC20: the last 20 amino acids of NOS1AP-L, containing the PDZ interaction motif suggested to stabilize interaction with NOS-I; NOS1AP-LΔC20: NOS1AP-L lacking the last 20 amino acids; NOS1AP-S: the short isoform of NOS1AP), residues 396-503 of NOS1AP-L (NOS1AP396-503) encoding the full NOS-I interaction domain, and N-terminal 133 amino acids of NOS-I (NOS-I1-133) encoding for the extended PDZ-domain. Neuropsychiatric disorders involve morphological brain changes including altered dendritic development and spine plasticity. Hence, I have examined dendritic morphology in primary cultured hippocampal and cortical neurons upon overexpression of constructed rAAV vectors. Sholl analysis revealed that overexpression of NOS1AP-L and NOS1AP-LΔC20 mildly reduced dendritic length/branching. Moreover, overexpression of all NOS1AP isoforms/domains resulted in highly altered spine plasticity including significant reduction in the number of mature spines and increased growth of filopodia. These findings suggest that NOS1AP affects dendritic growth and development of dendritic spines, which may involve both, increased NOS-I/NOS1AP interaction as well as interaction of NOS1AP with proteins other than NOS-I. Interestingly, the observed alterations in dendritic morphology were reminiscent of those observed in post-mortem brains of patients with neuropsychiatric disorders. Given the dendritic alterations in vitro, I have examined, whether disruption of NOS-I PDZ interaction would also result in behavioral deficits associated with neuropsychiatric disorders. To this end, rAAV vectors expressing NOS1AP-L, NOS1AP396-503, NOS-I1-133, and mCherry were stereotaxically delivered to the dorsal hippocampus of 6-week-old male C57Bl/6J mice. One week after surgery, mice were randomly separated into two groups. One of those groups underwent three weeks of chronic mild stress (CMS). Afterwards all mice were subjected to a comprehensive behavioral analysis. The findings revealed that overexpression of the constructs did not result in phenotypes related to anxiety or depression, though CMS had an anxiolytic effect independent of the injected construct. Mice overexpressing NOS-I1-133, previously shown to disrupt NOS-I/PSD-95 interaction, showed impaired spatial memory, sensorimotor gating, social interaction, and increased locomotor activity. NOS1AP overexpressing mice showed mild impairments in sensorimotor gating and spatial working memory and severely impaired social interaction. NOS1AP396-503 overexpressing mice also showed impaired social interaction but enhanced sensorimotor gating and reduced locomotor activity. Taken together, these behavioral findings indicate an involvement of NOS-I PDZ interactions in phenotypes associated with positive symptoms and cognitive deficits of psychotic disorders. In summary, this study revealed an important contribution of NOS-I protein interactions in the development of endophenotypic traits of neuropsychiatric disorders, in particular schizophrenia, at morphological and behavioral levels. These findings might eventually aid to a better understanding of NOS-I-dependent psychopathogenesis, and to develop pharmacologically relevant treatment strategies.}, subject = {Stickstoffmonoxid-Synthase}, language = {en} } @phdthesis{Schaefer2018, author = {Sch{\"a}fer, Carmen}, title = {Influence of interleukin-6-type cytokine oncostatin M on murine aortic vascular smooth muscle cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135527}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Oncostatin M (OSM) is a cytokine of the interleukin-6 family and released in the early phase of inflammation by neutrophils, activated macrophages, dendritic cells, and T lymphocytes. Its roles in physiology and disease are not entirely understood yet. It has been shown recently that substantial amounts of OSM are found in atherosclerotic plaques. The first part of this thesis addresses the effects of OSM on vascular smooth muscle cells (VSMCs). This cell type is known to contribute to atherogenesis and expresses the type I and type II OSM receptor complexes. This study revealed that OSM is a strong inducer of an array of genes which have recently been shown to play important roles in atherosclerosis. Investigation of VSMCs isolated from OSMRbeta-deficient (Osmr-/-) mice proved that the regulation of these target genes is entirely dependent on the activation of the type II OSMR complex. In addition to OSM, other cytokines expressed by T lymphocytes were found to contribute to plaque development. According to earlier publications, the influence of IL-4, IL-13, and IL-17 on the progression of plaques were discussed controversially. Nevertheless, for the regulation of investigated atherosclerotic target genes and receptor complexes in VSMCs, they seemed to play a minor role compared to OSM. Only the expression of the decoy receptor IL-13Ralpha2 - a negative feedback mechanism for IL-13-mediated signalling - was strongly induced after treatment with all mentioned cytokines, especially when VSMCs were primed with OSM before stimulation. The second part of this thesis focuses on the role of OSM during the progression of atherosclerosis in vivo. Therefore, Ldlr-/-Osmr-/- mice were generated by crossing Ldlr-/- mice - a typical mouse model for atherosclerosis - with Osmr-/- mice. These double-deficient mice together with Ldlr-/-Osmr+/+ mice were set on cholesterol rich diet (Western diet, WD) for 12 weeks before they were sacrificed. Determination of body and organ weight, staining of aortas and aortic roots as well as gene expression profiling strongly suggested that Ldlr-/-Osmr-/- mice are less susceptible for plaque development and weight gain compared to Ldlr-/-Osmr+/+ mice. However, further experiments and additional controls (C57Bl/6 and Osmr-/- mice) on WD are necessary to clarify the underlying molecular mechanisms. Taken together, the interleukin-6-type cytokine OSM is a strong inducer of an array of target genes involved in de-differentiation and proliferation of VSMCs, a process known to contribute substantially to atherogenesis. Further in vivo studies will help to clarify the role of OSM in atherosclerosis.}, subject = {Arteriosklerose}, language = {en} } @phdthesis{Monjezi2018, author = {Monjezi, Razieh}, title = {Engineering of chimeric antigen receptor T cells with enhanced therapeutic index in cancer immunotherapy using non-viral gene transfer and genome editing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152521}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The advances in genetic engineering have enabled us to confer T cells new desired functions or delete their specific undesired endogenous properties for improving their antitumor function. Due to their efficient gene delivery, viral vectors have been successfully used in T-cell engineering to provide gene transfer medicinal products for the treatment of human disease. One example is adoptive cell therapy with T cells that were genetically modified with gamma-retroviral and lentiviral (LV) delivery vectors to express a CD19-specific chimeric antigen receptor (CAR) for cancer treatment. This therapeutic approach has shown remarkable results against B-cell malignancies in pilot clinical trials. Consequently, there is a strong desire to make CAR T cell therapy scalable and globally available to patients. However, there are persistent concerns and limitations with the use of viral vectors for CAR T cell generation with regard to safety, cost and scale of vector production. In order to address these concerns, we aimed to improve non-viral gene transfer and genome editing tools as an effective, safe and broadly applicable alternative to viral delivery methods for T-cell engineering. In the first part of the study, we engineered CAR T cells through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles rather than conventional SB plasmids. This novel approach dramatically increased stable gene transfer rate and cell viability and resulted in higher yield of CAR+ T cells without the need of long ex vivo expansion to generate therapeutic doses of CAR+ T cells. Importantly, CD19-CAR T cells modified by MC-based SB transposition were equally effective as LV transduced CD19-CAR T cells in vitro and in a murine xenograft model (NSG/Raji-ffLuc), where a single administration of CD8+ and CD4+ CAR T cells led to complete eradication of lymphoma and memory formation of CAR T cells after lymphoma clearance. To characterize the biosafety profile of the CAR T cell products, we did the most comprehensive genomic insertion site analysis performed so far in T cells modified with SB. The data showed a close-to-random integration profile of the SB transposon with a higher number of insertions in genomic safe harbors compared to LV integrants. We developed a droplet digital PCR assay that enables rapid determination of CAR copy numbers for clinical applications. In the second part of the study, we ablated expression of PD-1, a checkpoint and negative regulator of T cell function to improve the therapeutic index of CAR T cells. This was accomplished using non-viral CRISPR/Cas9 via pre-assemble Cas9 protein and in vitro-transcribed sgRNA (Cas9 RNP). Finally, we combined our developed Cas9 RNP tool with CAR transposition from MC vectors into a single-step protocol and successfully generated PD-1 knockout CAR+ T cells. Based on the promising results achieved from antibody-mediated PD-1 blockade in the treatment of hematological and solid tumors, we are confident that PD-1 knockout CAR T cells enhance the potency of CAR T cell therapies for treatment of cancers without the side effects of antibody-based therapies. In conclusion, we provide a novel platform for virus-free genetic engineering of CAR T cells that can be broadly applied in T-cell cancer therapy. The high level of gene transfer rate and efficient genome editing, superior safety profile as well as ease-of-handling and production of non-viral MC vectors and Cas9 RNP position our developed non-viral strategies to become preferred approaches in advanced cellular and gene-therapy.}, subject = {Krebs }, language = {en} } @unpublished{NoseWernerUedaetal.2018, author = {Nose, Naoko and Werner, Rudolf A. and Ueda, Yuichiro and G{\"u}nther, Katharina and Lapa, Constantin and Javadi, Mehrbod S. and Fukushima, Kazuhito and Edenhofer, Frank and Higuchi, Takahiro}, title = {Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay}, series = {International Journal of Cardiology}, journal = {International Journal of Cardiology}, issn = {0167-5273}, doi = {10.1016/j.ijcard.2018.06.089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163320}, year = {2018}, abstract = {Background: Recent developments in cellular reprogramming technology enable the production of virtually unlimited numbers of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Although hiPSC-CM share various characteristic hallmarks with endogenous cardiomyocytes, it remains a question as to what extent metabolic characteristics are equivalent to mature mammalian cardiomyocytes. Here we set out to functionally characterize the metabolic status of hiPSC-CM in vitro by employing a radionuclide tracer uptake assay. Material and Methods: Cardiac differentiation of hiPSC was induced using a combination of well-orchestrated extrinsic stimuli such as WNT activation (by CHIR99021) and BMP signalling followed by WNT inhibition and lactate based cardiomyocyte enrichment. For characterization of metabolic substrates, dual tracer uptake studies were performed with \(^{18}\)F-2-fluoro-2-deoxy-D-glucose (\(^{18}\)F-FDG) and \(^{125}\)I-β-methyl-iodophenyl-pentadecanoic acid (\(^{125}\)I-BMIPP) as transport markers of glucose and fatty acids, respectively. Results: After cardiac differentiation of hiPSC, in vitro tracer uptake assays confirmed metabolic substrate shift from glucose to fatty acids that was comparable to those observed in native isolated human cardiomyocytes. Immunostaining further confirmed expression of fatty acid transport and binding proteins on hiPSC-CM. Conclusions: During in vitro cardiac maturation, we observed a metabolic shift to fatty acids, which are known as a main energy source of mammalian hearts, suggesting hi-PSC-CM as a potential functional phenotype to investigate alteration of cardiac metabolism in cardiac diseases. Results also highlight the use of available clinical nuclear medicine tracers as functional assays in stem cell research for improved generation of autologous differentiated cells for numerous biomedical applications.}, subject = {Stammzelle}, language = {en} } @phdthesis{Dolles2018, author = {Dolles, Dominik}, title = {Development of Hybrid GPCR Ligands: Photochromic and Butyrylcholinesterase Inhibiting Human Cannabinoid Receptor 2 Agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {While life expectancy increases worldwide, treatment of neurodegenerative diseases such as AD becomes a major task for industrial and academic research. Currently, a treatment of AD is only symptomatical and limited to an early stage of the disease by inhibiting AChE. A cure for AD might even seem far away. A rethinking of other possible targets is therefore necessary. Addressing targets that can influence AD even at later stages might be the key. Even if it is not possible to find a cure for AD, it is of great value for AD patients by providing an effective medication. The suffering of patients and their families might be relieved and remaining years may be spent with less symptoms and restrictions. It was shown that a combination of hCB2R agonist and BChE inhibitor might exactly be a promising approach to combat AD. In the previous chapters, a first investigation of dual-acting compounds that address both hCB2R and BChE was illustrated (figure 6.1). A set of over 30 compounds was obtained by applying SARs from BChE inhibitors to a hCB2R selective agonist developed by AstraZeneca. In a first in vitro evaluation compounds showed selectivity over hCB1R and AChE. Further investigations could also prove agonism and showed that unwanted off-target affinity to hMOP receptor could be designed out. The development of a homology model for hCB2R (based on a novel hCB1R crystal) could further elucidate the mode of action of the ligand binding. Lastly, first in vivo studies showed a beneficial effect of selected dual-acting compounds regarding memory and cognition. Since these first in vivo studies mainly aim for an inhibition of the BChE, it should be the aim of upcoming projects to proof the relevance of hCB2R agonism in vivo as well. In addition, pharmacokinetic as well as solubility studies may help to complete the overall picture. Currently, hybrid-based dual-acting hCB2R agonists and selective BChE inhibitors are under investigation in our lab. First in vitro evaluations showed improved BChE inhibition and selectivity over AChE compared to tacrine.78 Future in vitro and in vivo studies will clarify their usage as drug molecules with regard to hepatotoxicity and blood-brain barrier penetration. Since the role of hCB2R is not yet completely elucidated, the use of photochromic toolcompounds becomes an area of interest. These tool-compounds (and their biological effect) can be triggered upon irradiation with light and thus help to investigate time scales and ligand binding. A set of 5-azobenzene benzimidazoles was developed and synthesized. In radioligand binding studies, affinity towards hCB2R could be increased upon irradiation with UV-light (figure 6.2). This makes the investigated compounds the first GPCR ligands that can be activated upon irradiation (not vice versa). The aim of upcoming research will be the triggering of a certain intrinsic activity by an "efficacy-switch". For this purpose, several attempts are currently under investigation: an introduction of an azobenzene moiety at the 2-position of the benzimidazole core already led to a slight difference in efficacy upon irradiation with UV light. Another approach going on in our lab is the development of hCB1R switches based on the selective hCB1R inverse agonist rimonabant. First in vitro results are not yet available (figure 6.3).}, subject = {Ligand }, language = {en} } @phdthesis{KraehenbuehlAmstalden2018, author = {Kr{\"a}henb{\"u}hl Amstalden, Maria Cecilia}, title = {Development of a bacterial responsive antibiotic release system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often neglected is their untargeted mechanism of action, affecting not only the infection itself but also commensal bacteria which are often opportunistic pathogens causing many diseases as well. Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease aureolysin which is expressed by S. aureus during infections would cleave the linker and partially release the antibiotic which would be still attached to a remaining tetrapeptide. These would be cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally releasing the compound. In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. It should be sensitive towards the target bacterial protease but not be cleaved by any human enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen since it was not sensitive towards MMPs, but cleaved by aureolysin. In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in hydrogel formulations. The purpose was to physically incorporate the antibiotic within the hydrogel, which would be released by the cleavage of those sequences and the consequent loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a PVA matrix modified with maleimide, which allows a conjugation reaction with thiol functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) presented a low diffusion rate, thus the aureolysin release assays were performed only using this prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either quickly diffused into the medium or was not released at all. The physical incorporation of the antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a peak with the same retention time correspondent to the fragment product after cleavage of the free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a promising strategy for its bioresponsive release. Within the third part of this study, we analyzed the degradation of the resulted fragment after aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We determined the concentration of those enzymes in human plasma and synthesized the fragment by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By incubating the construct with the lowest aminopeptidase concentration measured in plasma, the fluorophore was completely released within two hours, showing the efficacy of these enzymes as bioresponsive agents. The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker- CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker by aureolysin was very similar to the one obtained for the free peptide, indicating that the PEGylation does not interfere on the enzymatic activity. However, by trying to increase the loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the system, indicating the formation of aggregates by those constructs. The designed system has proved to be a smart strategy for the delivery on demand of antibiotics in which the drug is only released by the presence of S. aureus during their virulent state.}, subject = {Arzneimittelforschung}, language = {en} } @phdthesis{SchuesslergebHecht2018, author = {Sch{\"u}ßler [geb. Hecht], Nina Kristin Petra}, title = {Novel formulation principles for bioavailability enhancement of poorly water-soluble and poorly permeable drugs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Since four decades, high-throughput screenings have been conducted in drug discovery, fuelling the identification of potential new drug candidates. This approach, however, often promotes the detection of compounds with undesired physico-chemical properties like poor aqueous solubility or low membrane permeability. Indeed, dissolution and absorption of a drug are prerequisites for systemic exposure and therapeutic effects. Therefore, innovative strategies to optimize unfavourable performance of new drug candidates are in great demand in order to increase drug concentrations at the site of action whilst simultaneously reducing drug variability. In chapter I of this research work, hydrophobic ion pairing (HIP) is discussed as a promising strategy to improve the bioavailability of BCS class III compounds, which have high aqueous solubility and low permeability. The review points out the limitations of poorly absorbable drugs and details the approach of pairing these APIs with hydrophobic counterions. Apart from the motivation to tailor physico-chemical, biopharmaceutical and toxicological properties of BCS class III compounds, the hydrophobic ion pairing facilitates their formulation into drug delivery systems. Besides advantageous effects, disadvantages of the ion pair formation, such as the decreased aqueous solubility of the ions pair, are critically outlined. Finally, the review covers an overview of non-invasive administration routes permitted after ion pair formation, including oral/enteral, buccal, nasal, ocular and transdermal drug administration. Overall, the HIP approach offers substantial benefits regarding the bioavailability enhancement of BCS class III compounds. Chapter II concerns GHQ168 developed by Holzgrabe et al., a BCS class II compound characterized by low aqueous solubility and high permeability. GHQ168 was developed for the treatment of human African trypanosomiasis (HAT), a tropical disease for which novel active compounds are urgently needed. This lead compound was found to be very active against trypanosoma brucei brucei and trypanosoma brucei rhodesiense in cell culture assays, however, the low aqueous solubility prevented further preclinical development. To target this drawback, two different approaches were selected, including (I) the chemical modification and (II) the spray drying of GHQ168. The newly synthesized set of derivatives as well as the spray dried GHQ168 were subjected to a physico-chemical and microbiological characterization. It turned out that both approaches successfully improved aqueous solubility, however, for the derivatives of GHQ168 at the expense of activity. Furthermore, the pharmacokinetic parameters of GHQ168 and of the most active derivatives, GHQ242 and GHQ243, were evaluated. Elimination half-lives between 1.5 to 3.5 h after intraperitoneal administration and modest to strong serum albumin binding for GHQ243 (45\%) and GHQ168 (80\%) and very high binding (> 99\%) for GHQ242 were detected. The spray dried formulation of GHQ168, as well as GHQ242 and GHQ243 were investigated in two in vivo studies in mice infected with t. b. rhodesiense (STIB900), referred to as (I) stringent model and (II) early-treatment model. In the stringent model (2 applications/day on day 3-6 after infection) the mean survival duration (MSD) of mice treated with spray dried GHQ168 exceeded the MSD of the untreated control group (17 days versus 9 days), a difference that was statistically significant. In contrast, no statistical difference was observed for GHQ242 (14 days) and GHQ243 (12 days). GHQ168 was further assessed in the early-treatment model (2 applications/day on day 1-4 after infection) and again a statistically significant improvement of MSD (32 days (end of observation period) versus 7 days) was observed. Finally, exciting antitrypanosomal efficacy for the spray dried formulation of GHQ168 was demonstrated. NADPH oxidases (NOX) were found to be the main source of endothelial reactive oxygen species (ROS) formation. Chapter III reports on the formulation studies on triazolopyrimidine derivatives from the VAS library, a set of NADPH oxidase inhibitors. These were developed for the treatment of elevated ROS levels, which contribute to the development of cardiovascular diseases. Although in vitro results from numerous studies indicated promising efficacy and selectivity for the VAS-compounds, the low water solubility impeded the in vivo translation and further preclinical development. For this reason, three derivatives, VAS2870, VAS3947, and VAS4024 were physico-chemically characterized and VAS3947, the most soluble compound, was selected for further formulation studies. These approaches included (I) spray drying, (II) microemulsification and (III) complexation with cyclodextrins in order to develop formulations for oral and parenteral application. Solubility improvement of VAS3947 was successfully demonstrated for all preparations as expressed by supersaturation ratios in comparison to the solubility of the unformulated compound. For seven spray dried formulations, the ratio ranged from 3-9, and the ratio for four microemulsions was 8-19 after 120 min, respectively. The six cyclodextrin formulations achieved the highest supersaturation ratio between 3 and 174 after 20 hours. NMR measurements elucidated the inclusion of VAS3947 within the CD's cavity as well as the interaction with its outer surface. Ultimately, NOX inhibitors were opened for oral and parenteral administration for the first time. After successful solubility improvement of VAS3947, further investigations towards in vivo studies were conducted including stability studies with a focus on stability in solution and in plasma as presented in chapter IV. Furthermore, permeability and cytotoxicity assays were performed for the first time. It turned out that VAS3947 was instable in buffer and when exposed to light. Moreover, the compound showed decomposition in the presence of mouse microsomes and in human plasma. The VAS compounds contain an oxazol moiety linked to the triazolopyrimidine skeleton via a thioether. This structural element is responsible for the efficacy of the compound class, however it is susceptible to hydrolysis and to further degradation reactions. Moreover, VAS3947 harmed membrane integrity in the cell permeability assays and cytotoxicity investigations in HEK-293 and HEP-G2 cells revealed IC50 values in the same concentration range as reported for efficacy assays. Summarized, it was demonstrated that substances from the VAS library were no appropriate model compounds for ROS investigations nor suitable candidates for further preclinical development.}, subject = {L{\"o}slichkeit}, language = {en} } @phdthesis{Krishna2018, author = {Krishna, Anand}, title = {Regulatory Focus Theory and Information Processing - A Series of Exploratory Studies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163365}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Regulatory focus (RF) theory (Higgins, 1997) states that individuals follow different strategic concerns when focusing on gains (promotion) rather than losses (prevention). Applying the Reflective-Impulsive Model (RIM, Strack \& Deutsch, 2004), this dissertation investigates RF's influence on basic information processing, specifically semantic processing (Study 1), semantic (Study 2) and affective (Study 3) associative priming, and basic reflective operations (Studies 4-7). Study 1 showed no effect of RF on pre-activation of RF-related semantic concepts in a lexical decision task (LDT). Study 2 indicated that primes fitting a promotion focus improve performance in a LDT for chronically promotion-focused individuals, but not chronically prevention-focused individuals. However, the latter performed better when targets fit their focus. Stronger affect and arousal after processing valent words fitting an RF may explain this pattern. Study 3 showed some evidence for stronger priming effects for negative primes in a bona-fide pipeline task (Fazio et al., 1995) for chronically prevention-focused participants, while also providing evidence that situational prevention focus insulates individuals from misattributing the valence of simple primes. Studies 4-7 showed that a strong chronic prevention focus leads to greater negation effects for valent primes in an Affect Misattribution Procedure (Payne et al., 2005), especially when it fits the situation. Furthermore, Study 6 showed that these effects result from stronger weighting of negated valence rather than greater ease in negation. Study 7 showed that the increased negation effect is independent of time pressure. Broad implications are discussed, including how RF effects on basic processing may explain higher-order RF effects.}, subject = {Motivation}, language = {en} } @phdthesis{Lichtenstein2018, author = {Lichtenstein, Leonie}, title = {Color vision and retinal development of the compound eye in bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The superfamiliy of bees, Apiformes, comprises more than 20,000 species. Within the group, the eusocial species like honeybees and bumblebees are receiving increased attention due to their outstanding importance for pollination of many crop and wild plants, their exceptional eusocial lifestyle and complex behavioral repertoire, which makes them an interesting invertebrate model to study mechanisms of sensory perception, learning and memory. In bees and most animals, vision is one of the major senses since almost every living organism and many biological processes depend on light energy. Bees show various forms of vision, e.g. color vision, achromatic vision or polarized vision in order to orientate in space, recognize mating partners, detect suitable nest sites and search for rewarding food sources. To catch photons and convert light energy into electric signals, bees possess compound eyes which consists of thousands of single ommatidia comprising a fixed number of photoreceptors; they are characterized by a specific opsin protein with distinct spectral sensitivity. Different visual demands, e.g. the detection of a single virgin queen by a drone, or the identification and discrimination of flowers during foraging bouts by workers, gave rise to the exceptional sex-specific morphology and physiology of male and female compound eyes in honeybees. Since Karl von Frisch first demonstrated color vision in honeybees more than 100 years ago, much effort has been devoted to gain insight into the molecular, morphological and physiological characteristics of (sex-specific) bee compound eyes and the corresponding photoreceptors. However, to date, almost nothing is known about the underlying mechanisms during pupal development which pattern the retina and give rise to the distinct photoreceptor distribution. Hence, in Chapter 2 and 3 I aimed to better understand the retinal development and photoreceptor determination in the honeybee eye. In a first step, the intrinsic temporal expression pattern of opsins within the retina was evaluated by quantifying opsin mRNA expression levels during the pupal phase of honeybee workers and drones. First results revealed that honeybee workers and drones express three different opsin genes, UVop, BLop and Lop1 during pupal development which give rise to an ultraviolet, blue, and green-light sensitive photoreceptor. Moreover, opsin expression patterns differed between both sexes and the onset of a particular opsin occurred at different time points during retinal development. Immunostainings of the developing honeybee retina in Chapter 2 showed that at the beginning of pupation the retina consist only of a thin hypodermis. However, at this stage all retinal structures are already present. From about mid of pupation, opsin expression levels increase and goes hand in hand with the differentiation of the rhabdoms, suggesting a two-step process in photoreceptor development and differentiation in the honeybee compound eye. In a first step the photoreceptor cells meet its fate during late pupation; in a second step, the quantity of opsin expression in each photoreceptor strongly increase up to the 25-fold shortly after eclosion. To date, the underlying mechanisms leading to different photoreceptor types have been intensively studied in the fruit fly, Drosophila melanogaster, and to some extend in butterflies. Interestingly, the molecular mechanisms seemed to be conserved within insects and e.g. the two transcription factors, spalt and spineless, which have been shown to be essential for photoreceptor determination in flies and butterflies, have been also identified in the honeybee. In chapter 3, I investigated the expression patterns of both transcription factors during pupal development of honeybee workers and showed that spalt is mainly expressed during the first few pupal stages which might correlate with the onset of BLop expression. Further, spineless showed a prominent peak at mid of pupation which might initiates the expression of Lop1. However, whether spalt and spineless are also essential for photoreceptor determination in the honeybee has still to be investigated, e.g. by a knockdown/out of the respective transcription factor during retinal development which leads to a spectral phenotype, e.g. a dichromatic eye. Such spectral phenotypes can then be tested in behavioral experiments in order to test the function of specific photoreceptors for color perception and the entrainment of the circadian clock. In order to evaluate the color discrimination capabilities of bees and the quality of color perception, a reliable behavioral experiment under controlled conditions is a prerequisite. Hence, in chapter 4, I aimed to establish the visual PER paradigm as a suitable method for behaviorally testing color vision in bees. Since PER color vision has considered to be difficult in bees and was not successful in Western honeybees without ablating the bee's antennae or presenting color stimuli in combination with other cues for several decades, the experimental setup was first established in bumblebees which have been shown to be robust and reliable, e.g. during electrophysiological recordings. Workers and drones of the bufftailed bumblebee, Bombus terrestris were able to associate different monochromatic light stimuli with a sugar reward and succeeded in discriminating a rewarded color stimulus from an unrewarded color stimulus. They were also able to retrieve the learned stimulus after two hours, and workers successfully transferred the learned information to a new behavioral context. In the next step, the experimental setup was adapted to honeybees. In chapter 5, I tested the setup in two medium-sized honeybees, the Eastern honeybee, Apis cerana and the Western honeybee, Apis mellifera. Both honeybee species were able to associate and discriminate between two monochromatic light stimuli, blue and green light, with peak sensitivities of 435 nm and 528 nm. Eastern and Western honeybees also successfully retrieve the learned stimulus after two hours, similar to the bumblebees. Visual conditioning setups and training protocols in my study significantly differed from previous studies using PER conditioning. A crucial feature found to be important for a successful visual PER conditioning is the duration of the conditioned stimulus presentation. In chapter 6, I systematically tested different length of stimuli presentations, since visual PER conditioning in earlier studies tended to be only successful when the conditioned stimulus is presented for more than 10 seconds. In this thesis, intact honeybee workers could successfully discriminate two monochromatic lights when the stimulus was presented 10 s before reward was offered, but failed, when the duration of stimulus presentation was shorter than 4 s. In order to allow a more comparable conditioning, I developed a new setup which includes a shutter, driven by a PC based software program. The revised setup allows a more precise and automatized visual PER conditioning, facilitating performance levels comparable to olfactory conditioning and providing now an excellent method to evaluate visual perception and cognition of bees under constant and controlled conditions in future studies.}, subject = {Biene}, language = {en} } @phdthesis{Weidner2018, author = {Weidner, Magdalena Theodora}, title = {Brain serotonin throughout development - for better and for worse}, publisher = {Magdalena T. Weidner}, address = {Maastricht, the Netherlands}, isbn = {978-94-6233-940-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The work presented in this thesis covers the effects of early-life adversity in the context of altered serotonin (5-HT; 5-hydroxytryptamine) system functioning in mice. The main body is focussing on a screening approach identifying molecular processes, potentially involved in distinct behavioural manifestations that emerge from or are concomitant with early adversity and, with regard to some behavioural manifestations, dependent on the functioning of the 5-HT system.}, subject = {Gehirn}, language = {en} } @phdthesis{Ries2018, author = {Ries, Mathias}, title = {The Role of the Central Bank, Banks and the Bond Market in the Paradigm of Monetary Analysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Als Folge der Finanzkrise 2008/09 sind unter einigen {\"O}konomen Zweifel an der Ad{\"a}quanz der theoretischen Modelle aufgekommen, insbesondere {\"u}ber diejenigen, die den Anspruch erheben, Finanzm{\"a}rkte und Banken zu modellieren. Aufgrund dieser Zweifel folgen einige {\"O}konomen einer neuen Str{\"o}mung, indem sie versuchen, ein neues Paradigma zu entwickeln, das auf einer geldwirtschaftlichen anstatt auf einer g{\"u}terwirtschaftlichen Theorie beruht. Der Hauptunterschied zwischen diesen beiden Sichtweisen ist, dass in einer G{\"u}terwirtschaft Geld keine essentielle Rolle spielt, wohingegen bei einer Geldwirtschaft jede Transaktion mit Geld abgewickelt wird. Grundlegend ist es deshalb wichtig zu kl{\"a}ren, ob eine Theorie, die Geld miteinschließt, zu anderen Schlussfolgerungen kommt als eine Theorie, die Geld außen vor l{\"a}sst. Ausgehend von dieser Problemstellung stelle ich im zweiten Kapitel die Schlussfolgerungen aus der g{\"u}terwirtschaftlichen Logik des Finanzsystems - modelliert durch die Loanable Funds-Theorie - der geldwirtschaftlichen Logik gegen{\"u}ber. Im Anschluss an die {\"U}berpr{\"u}fung der Schlussfolgerungen beschreibe ich drei Theorien {\"u}ber Banken. Hierbei beschreibt die sog. endogene Geldsch{\"o}fpungstheorie, in der die Zentralbanken die Kreditvergabe der Banken durch Preise steuern, unsere Welt am besten. Die endogene Geldsch{\"o}pfungstheorie ist die Basis f{\"u}r das theoretische Modell im dritten Kapitel. In diesem Modell handeln die Banken nach einem Gewinnmaximierungskalk{\"u}l, wobei die Ertr{\"a}ge aus dem Kreditgesch{\"a}ft erzielt werden und Kosten des Kreditausfallrisikos sowie Kosten durch die Refinanzierung (inklusive regulatorischer Vorschriften) enstehen. Hieraus leitet sich das Kreditangebot ab, das auf dem Kreditmarkt auf die Kreditnachfrage trifft. Die Kreditnachfrage wird durch die Kreditnehmer bestimmt, die f{\"u}r Konsumzwecke bzw. Investitionen Kredite bei Banken aufnehmen. Aus dem Zusammenspiel von Kreditangebot und Kreditnachfrage ergibt sich der gleichgewichtige Kreditzins sowie das gleichgewichtige Kreditvolumen, das Banken an Nichtbanken vergeben. Die Angebots- und Nachfrageseite, die auf dem Kreditmarkt miteinander interagieren, werden ausgehend vom theoretischen Modell empirisch f{\"u}r Deutschland im Zeitraum von 1999-2014 mit Hilfe eines Ungleichgewichtsmodells gesch{\"a}tzt, wobei sich zeigt, dass die Determinanten aus dem theoretischen Modell statistisch signifikant sind. Aufbauend auf dem theoretischen Bankenmodell wird das Modell im vierten Kapitel um den Bondmarkt erweitert. Der Bankenkredit- und der Bondmarkt sind im Gegensatz zur Beschreibung in der g{\"u}terwirtschaftlichen Analyse fundamental unterschiedlich. Zum Einen schaffen Banken Geld gem{\"a}ß der endogenen Geldsch{\"o}pfungstheorie. Sobald das Geld im Umlauf ist, k{\"o}nnen Nichtbanken dieses Geld umverteilen, indem sie es entweder f{\"u}r den G{\"u}terkauf verwenden oder l{\"a}ngerfristig ausleihen. Aufgrund des Fokusses auf das Finanzsystem in dieser Dissertation wird der Fall betrachtet, in dem Geld l{\"a}ngerfristig ausgeliehen wird. Das Motiv der Anbieter auf dem Bondmarkt, d.h. derjenigen, die Geld verleihen m{\"o}chten, ist {\"a}hnlich wie bei Banken getrieben von der Gewinnmaximierung. Ertr{\"a}ge k{\"o}nnen die Anbieter durch die Zinsen auf Bonds erwirtschaften. Kosten entstehen durch die Opportunit{\"a}tskosten der Geldhaltung als Depositen, den Kreditausfall des Schuldners sowie Kursverluste aufgrund von Zinsver{\"a}nderungen. Die geschilderte Logik basiert auf der Idee, dass Banken Geld schaffen, d.h. Originatoren von Geld sind, und das Geld auf dem Bondmarkt umverteilt wird und somit mehrfache Verwendung findet. Die beiden M{\"a}rkte sind sowohl angebots- als auch nachfrageseitig miteinander verkn{\"u}pft. Zum Einen refinanzieren sich Banken auf dem Bondmarkt, um die Fristentransformation, die durch die Kreditvergabe ensteht, zu reduzieren. Des Weiteren haben Kreditnachfrager die M{\"o}glichkeit, entweder Bankkredite oder Kredite auf dem Bondmarkt nachzufragen. Nach der theoretischen Darstellung des Finanzsystems bestehend aus dem Banken- und Bondmarkt folgt im f{\"u}nften Kapitel die Anwendung des Modells bei Quantitative Easing. Hier ist festzustellen, dass Quantitative Easing bereits bei der Ank{\"u}ndigung der Zentralbank das Verhalten der Marktakteure beeinflusst. Die vier großen Zentralbanken (Bank of Japan, Bank of England, Federal Reserve Bank und Europ{\"a}ische Zentralbank) haben aufgrund der anhaltenden Rezession und der bereits niedrigen kurzfristigen Zinsen das unkonventionelle Instrument des Aufkaufs von Anleihen angewandt. Im theoretischen Modell beeinflusst die Zentralbank bereits durch die Ank{\"u}ndigung die Akteuere auf dem Bondmarkt, sodass es zu sinkenden Risikopr{\"a}mien, da die Zentralbank als sog. 'lender of confidence' auftritt, zu (zumindest kurzfristig) sinkenden Zinserwartungen sowie insgesamt zu sinkenden langfristigen Zinsen kommt. Diese drei Hypothesen werden anhand empirischer Methoden f{\"u}r die Eurozone {\"u}berpr{\"u}ft.}, language = {en} } @phdthesis{TawkTaouk2018, author = {Tawk [Taouk], Caroline S.}, title = {The role of host-stress in the infection by the bacterial pathogen \(Shigella\) \(flexneri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The human-bacterial pathogen interaction is a complex process that results from a prolonged evolutionary arms race in the struggle for survival. The pathogen employs virulence strategies to achieve host colonization, and the latter counteracts using defense programs. The encounter of both organisms results in drastic physiological changes leading to stress, which is an ancient response accompanying infection. Recent evidence suggests that the stress response in the host converges with the innate immune pathways and influences the outcome of infection. However, the contribution of stress and the exact mechanism(s) of its involvement in host defense remain to be elucidated. Using the model bacterial pathogen Shigella flexneri, and comparing it with the closely related pathogen Salmonella Typhimurium, this study investigated the role of host stress in the outcome of infection. Shigella infection is characterized by a pronounced pro-inflammatory response that causes intense stress in host tissues, particularly the intestinal epithelium, which constitutes the first barrier against Shigella colonization. In this study, inflammatory stress was simulated in epithelial cells by inducing oxidative stress, hypoxia, and cytokine stimulation. Shigella infection of epithelial cells exposed to such stresses was strongly inhibited at the adhesion/binding stage. This resulted from the depletion of sphingolipidrafts in the plasma membrane by the stress-activated sphingomyelinases. Interestingly, Salmonella adhesion was not affected, by virtue of its flagellar motility, which allowed the gathering of bacteria at remaining membrane rafts. Moreover, the intracellular replication of Shigella lead to a similar sphingolipid-raft depletion in the membrane across adjacent cells inhibiting extracellular bacterial invasion. Additionally, this study shows that Shigella infection interferes with the host stress granule-formation in response to stress. Interestingly, infected cells exhibited a nuclear depletion of the global RNA-binding stress-granule associated proteins TIAR and TIA-1 and their accumulation in the cytoplasm. Overall, this work investigated different aspects of the host stress-response in the defense against bacterial infection. The findings shed light on the importance of the host stress-pathways during infection, and improve the understanding of different strategies in host-pathogen interaction.}, subject = {Shigella flexneri}, language = {en} }