@article{BritzMarkertWitvlietetal.2021, author = {Britz, Sebastian and Markert, Sebastian Matthias and Witvliet, Daniel and Steyer, Anna Maria and Tr{\"o}ger, Sarah and Mulcahy, Ben and Kollmannsberger, Philip and Schwab, Yannick and Zhen, Mei and Stigloher, Christian}, title = {Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy}, series = {Frontiers in Neuroanatomy}, volume = {15}, journal = {Frontiers in Neuroanatomy}, issn = {1662-5129}, doi = {10.3389/fnana.2021.732520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249622}, year = {2021}, abstract = {At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.}, language = {en} } @article{KuhlemannBeliuJanzenetal.2021, author = {Kuhlemann, Alexander and Beliu, Gerti and Janzen, Dieter and Petrini, Enrica Maria and Taban, Danush and Helmerich, Dominic A. and Doose, S{\"o}ren and Bruno, Martina and Barberis, Andrea and Villmann, Carmen and Sauer, Markus and Werner, Christian}, title = {Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy}, series = {Frontiers in Synaptic Neuroscience}, volume = {13}, journal = {Frontiers in Synaptic Neuroscience}, issn = {1663-3563}, doi = {10.3389/fnsyn.2021.727406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251035}, year = {2021}, abstract = {Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.}, language = {en} } @article{BorgesLinkEngstleretal.2021, author = {Borges, Alyssa R. and Link, Fabian and Engstler, Markus and Jones, Nicola G.}, title = {The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.720536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249253}, year = {2021}, abstract = {The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein's attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.}, language = {en} } @article{OsmanogluKhaledAlSeiariAlKhoorietal.2021, author = {Osmanoglu, {\"O}zge and Khaled AlSeiari, Mariam and AlKhoori, Hasa Abduljaleel and Shams, Shabana and Bencurova, Elena and Dandekar, Thomas and Naseem, Muhammad}, title = {Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.708417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249260}, year = {2021}, abstract = {Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.}, language = {en} } @article{ColizziBeerCutietal.2021, author = {Colizzi, Francesca Sara and Beer, Katharina and Cuti, Paolo and Deppisch, Peter and Mart{\´i}nez Torres, David and Yoshii, Taishi and Helfrich-F{\"o}rster, Charlotte}, title = {Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2021.705048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242909}, year = {2021}, abstract = {Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.}, language = {en} } @article{KronesRuehlingBeckeretal.2021, author = {Krones, David and R{\"u}hling, Marcel and Becker, Katrin Anne and Kunz, Tobias C. and Sehl, Carolin and Paprotka, Kerstin and Gulbins, Erich and Fraunholz, Martin}, title = {Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line}, series = {Frontiers in Microbiology}, volume = {12}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2021.694489}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244843}, year = {2021}, abstract = {Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.}, language = {en} } @article{SchererFleishmanJonesetal.2021, author = {Scherer, Marc and Fleishman, Sarel J. and Jones, Patrik R. and Dandekar, Thomas and Bencurova, Elena}, title = {Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.673005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240598}, year = {2021}, abstract = {To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.}, language = {en} } @article{HartmannReisslandMaieretal.2021, author = {Hartmann, Oliver and Reissland, Michaela and Maier, Carina R. and Fischer, Thomas and Prieto-Garcia, Cristian and Baluapuri, Apoorva and Schwarz, Jessica and Schmitz, Werner and Garrido-Rodriguez, Martin and Pahor, Nikolett and Davies, Clare C. and Bassermann, Florian and Orian, Amir and Wolf, Elmar and Schulze, Almut and Calzado, Marco A. and Rosenfeldt, Mathias T. and Diefenbacher, Markus E.}, title = {Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.641618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230949}, year = {2021}, abstract = {Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.}, language = {en} } @article{LehenbergerFohGoettleinetal.2021, author = {Lehenberger, Maximilian and Foh, Nina and G{\"o}ttlein, Axel and Six, Diana and Biedermann, Peter H. W.}, title = {Nutrient-Poor Breeding Substrates of Ambrosia Beetles Are Enriched With Biologically Important Elements}, series = {Frontiers in Microbiology}, volume = {12}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2021.664542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237602}, year = {2021}, abstract = {Fungus-farming within galleries in the xylem of trees has evolved independently in at least twelve lineages of weevils (Curculionidae: Scolytinae, Platypodinae) and one lineage of ship-timber beetles (Lymexylidae). Jointly these are termed ambrosia beetles because they actively cultivate nutritional "ambrosia fungi" as their main source of food. The beetles are obligately dependent on their ambrosia fungi as they provide them a broad range of essential nutrients ensuring their survival in an extremely nutrient-poor environment. While xylem is rich in carbon (C) and hydrogen (H), various elements essential for fungal and beetle growth, such as nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn) are extremely low in concentration. Currently it remains untested how both ambrosia beetles and their fungi meet their nutritional requirements in this habitat. Here, we aimed to determine for the first time if galleries of ambrosia beetles are generally enriched with elements that are rare in uncolonized xylem tissue and whether these nutrients are translocated to the galleries from the xylem by the fungal associates. To do so, we examined natural galleries of three ambrosia beetle species from three independently evolved farming lineages, Xyleborinus saxesenii (Scolytinae: Xyleborini), Trypodendron lineatum (Scolytinae: Xyloterini) and Elateroides dermestoides (Lymexylidae), that cultivate unrelated ambrosia fungi in the ascomycete orders Ophiostomatales, Microascales, and Saccharomycetales, respectively. Several elements, in particular Ca, N, P, K, Mg, Mn, and S, were present in high concentrations within the beetles' galleries but available in only very low concentrations in the surrounding xylem. The concentration of elements was generally highest with X. saxesenii, followed by T. lineatum and E. dermestoides, which positively correlates with the degree of sociality and productivity of brood per gallery. We propose that the ambrosia fungal mutualists are translocating essential elements through their hyphae from the xylem to fruiting structures they form on gallery walls. Moreover, the extremely strong enrichment observed suggests recycling of these elements from the feces of the insects, where bacteria and yeasts might play a role.}, language = {en} } @article{KunzRuehlingMoldovanetal.2021, author = {Kunz, Tobias C. and R{\"u}hling, Marcel and Moldovan, Adriana and Paprotka, Kerstin and Kozjak-Pavlovic, Vera and Rudel, Thomas and Fraunholz, Martin}, title = {The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.644750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232292}, year = {2021}, abstract = {Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.}, language = {en} } @article{GeisingerRodriguezCasuriagaBenavente2021, author = {Geisinger, Adriana and Rodr{\´i}guez-Casuriaga, Rosana and Benavente, Ricardo}, title = {Transcriptomics of Meiosis in the Male Mouse}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.626020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231032}, year = {2021}, abstract = {Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.}, language = {en} } @article{DapergolaMenegazziRaabeetal.2021, author = {Dapergola, Eleni and Menegazzi, Pamela and Raabe, Thomas and Hovhanyan, Anna}, title = {Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.595754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231049}, year = {2021}, abstract = {Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.}, language = {en} } @article{EisenreichRudelHeesemannetal.2021, author = {Eisenreich, Wolfgang and Rudel, Thomas and Heesemann, J{\"u}rgen and Goebel, Werner}, title = {Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.615450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222348}, year = {2021}, abstract = {Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.}, language = {en} } @article{YeKeicherGentschevetal.2021, author = {Ye, Mingyu and Keicher, Markus and Gentschev, Ivaylo and Szalay, Aladar A.}, title = {Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {8}, issn = {2227-9059}, doi = {10.3390/biomedicines9081032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245104}, year = {2021}, abstract = {Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer.}, language = {en} } @article{HepbasliGredyUllrichetal.2021, author = {Hepbasli, Denis and Gredy, Sina and Ullrich, Melanie and Reigl, Amelie and Abeßer, Marco and Raabe, Thomas and Schuh, Kai}, title = {Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning}, series = {Brain Sciences}, volume = {11}, journal = {Brain Sciences}, number = {10}, issn = {2076-3425}, doi = {10.3390/brainsci11101365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248525}, year = {2021}, abstract = {Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic-pituitary-adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice.}, language = {en} } @article{RedlichMartinSteffan‐Dewenter2021, author = {Redlich, Sarah and Martin, Emily A. and Steffan-Dewenter, Ingolf}, title = {Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems}, series = {Journal of Applied Ecology}, volume = {58}, journal = {Journal of Applied Ecology}, number = {3}, doi = {10.1111/1365-2664.13821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228345}, pages = {507 -- 517}, year = {2021}, abstract = {Input-driven, modern agriculture is commonly associated with large-scale threats to biodiversity, the disruption of ecosystem services and long-term risks to food security and human health. A switch to more sustainable yet highly productive farming practices seems unavoidable. However, an integrative evaluation of targeted management schemes at field and landscape scales is currently lacking. Furthermore, the often-disproportionate influence of soil conditions and agrochemicals on yields may mask the benefits of biodiversity-driven ecosystem services. Here, we used a real-world ecosystem approach to identify sustainable management practices for enhanced functional biodiversity and yield on 28 temperate wheat fields. Using path analysis, we assessed direct and indirect links between soil, crop and landscape management with natural enemies and pests, as well as follow-on effects on yield quantity and quality. A paired-field design with a crossed insecticide-fertilizer experiment allowed us to control for the relative influence of soil characteristics and agrochemical inputs. We demonstrate that biodiversity-enhancing management options such as reduced tillage, crop rotation diversity and small field size can enhance natural enemies without relying on agrochemical inputs. Similarly, we show that in this system controlling pests and weeds by agrochemical means is less relevant than expected for final crop productivity. Synthesis and applications. Our study highlights soil, crop and landscape management practices that can enhance beneficial biodiversity while reducing agrochemical usage and negative environmental impacts of conventional agriculture. The diversification of cropping systems and conservation tillage are practical measures most farmers can implement without productivity losses. Combining local measures with improved landscape management may also strengthen the sustainability and resilience of cropping systems in light of future global change.}, language = {en} } @article{SchilcherThammStrubeBlossetal.2021, author = {Schilcher, Felix and Thamm, Markus and Strube-Bloss, Martin and Scheiner, Ricarda}, title = {Opposing actions of octopamine and tyramine on honeybee vision}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, issn = {2218-273X}, doi = {10.3390/biom11091374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246214}, year = {2021}, abstract = {The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.}, language = {en} } @article{HartkeWaldvogelSprengeretal.2021, author = {Hartke, Juliane and Waldvogel, Ann-Marie and Sprenger, Philipp P. and Schmitt, Thomas and Menzel, Florian and Pfenninger, Markus and Feldmeyer, Barbara}, title = {Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species}, series = {Journal of Evolutionary Biology}, volume = {34}, journal = {Journal of Evolutionary Biology}, number = {6}, doi = {10.1111/jeb.13742}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228355}, pages = {937 -- 952}, year = {2021}, abstract = {Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi-dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence, are subject to changes via environmental acclimation or adaptation. The combination of environmental and chemical association analyses based on genome-wide Pool-Seq data allowed us to identify single nucleotide polymorphisms (SNPs) associated with climate and with chemical differences. Within species, CHC changes as a response to climate seem to be driven by phenotypic plasticity, since there is no overlap between climate- and CHC-associated SNPs. The only exception is the odorant receptor OR22c, which may be a candidate for population-specific CHC recognition in one of the species. Within both species, climate is significantly correlated with CHC differences, as well as to allele frequency differences. However, associated candidate SNPs, genes and functions are largely species-specific and we find evidence for minimal parallel evolution only on the level of genomic regions (J = 0.04). This highlights that even closely related species may follow divergent evolutionary trajectories when expressing similar adaptive phenotypes.}, language = {en} } @article{HabensteinThammRoessler2021, author = {Habenstein, Jens and Thamm, Markus and R{\"o}ssler, Wolfgang}, title = {Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {12}, doi = {10.1002/cne.25166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244751}, pages = {3155 -- 3170}, year = {2021}, abstract = {Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.}, language = {en} } @article{HaggeMuellerBirkemoeetal.2021, author = {Hagge, Jonas and M{\"u}ller, J{\"o}rg and Birkemoe, Tone and Buse, J{\"o}rn and Christensen, Rune Haubo Bojesen and Gossner, Martin M. and Gruppe, Axel and Heibl, Christoph and Jarzabek-M{\"u}ller, Andrea and Seibold, Sebastian and Siitonen, Juha and Soutinho, Jo{\~a}o Gon{\c{c}}alo and Sverdrup-Thygeson, Anne and Thorn, Simon and Drag, Lukas}, title = {What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database}, series = {Journal of Animal Ecology}, volume = {90}, journal = {Journal of Animal Ecology}, number = {8}, doi = {10.1111/1365-2656.13512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244717}, pages = {1934 -- 1947}, year = {2021}, abstract = {The extinction of species is a non-random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait-based approaches offer a promising tool to achieve this goal. In forests, deadwood-dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional-odds multiple linear mixed-effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood.}, language = {en} } @article{BaesslerBrandlMuelleretal.2021, author = {B{\"a}ssler, Claus and Brandl, Roland and M{\"u}ller, J{\"o}rg and Krah, Franz S. and Reinelt, Arthur and Halbwachs, Hans}, title = {Global analysis reveals an environmentally driven latitudinal pattern in mushroom size across fungal species}, series = {Ecology Letters}, volume = {24}, journal = {Ecology Letters}, number = {4}, doi = {10.1111/ele.13678}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239808}, pages = {658 -- 667}, year = {2021}, abstract = {Although macroecology is a well-established field, much remains to be learned about the large-scale variation of fungal traits. We conducted a global analysis of mean fruit body size of 59 geographical regions worldwide, comprising 5340 fungal species exploring the response of fruit body size to latitude, resource availability and temperature. The results showed a hump-shaped relationship between mean fruit body size and distance to the equator. Areas with large fruit bodies were characterised by a high seasonality and an intermediate mean temperature. The responses of mutualistic species and saprotrophs were similar. These findings support the resource availability hypothesis, predicting large fruit bodies due to a seasonal resource surplus, and the thermoregulation hypothesis, according to which small fruit bodies offer a strategy to avoid heat and cold stress and therefore occur at temperature extremes. Fruit body size may thus be an adaptive trait driving the large-scale distribution of fungal species.}, language = {en} } @article{HoehneProkopovKuhletal.2021, author = {H{\"o}hne, Christin and Prokopov, Dmitry and Kuhl, Heiner and Du, Kang and Klopp, Christophe and Wuertz, Sven and Trifonov, Vladimir and St{\"o}ck, Matthias}, title = {The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome-scale sturgeon genome}, series = {Reviews in Aquaculture}, volume = {13}, journal = {Reviews in Aquaculture}, number = {3}, doi = {10.1111/raq.12542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239865}, pages = {1709 -- 1729}, year = {2021}, abstract = {Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar- and meat-producing aquaculture, protection of wild sturgeons and their re-introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon-specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll-like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern-induced activation. Retinoic acid-inducible gene-I-like (RIG-like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon-specific genome duplication, where some single-copy genes contrast with many duplications, allowing tissue specialization, sub-functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications.}, language = {en} } @article{KastnerHendricksDeinleinetal.2021, author = {Kastner, Carolin and Hendricks, Anne and Deinlein, Hanna and Hankir, Mohammed and Germer, Christoph-Thomas and Schmidt, Stefanie and Wiegering, Armin}, title = {Organoid Models for Cancer Research — From Bed to Bench Side and Back}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {19}, issn = {2072-6694}, doi = {10.3390/cancers13194812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246307}, year = {2021}, abstract = {Simple Summary Despite significant strides in multimodal therapy, cancers still rank within the first three causes of death especially in industrial nations. A lack of individualized approaches and accurate preclinical models are amongst the major barriers that limit the development of novel therapeutic options and drugs. Recently, the 3D culture system of organoids was developed which stably retains the genetic and phenotypic characteristics of the original tissue, healthy as well as diseased. In this review, we summarize current data and evidence on the relevance and reliability of such organoid culture systems in cancer research, focusing on their role in drug investigations (in a personalized manner). Abstract Organoids are a new 3D ex vivo culture system that have been applied in various fields of biomedical research. First isolated from the murine small intestine, they have since been established from a wide range of organs and tissues, both in healthy and diseased states. Organoids genetically, functionally and phenotypically retain the characteristics of their tissue of origin even after multiple passages, making them a valuable tool in studying various physiologic and pathophysiologic processes. The finding that organoids can also be established from tumor tissue or can be engineered to recapitulate tumor tissue has dramatically increased their use in cancer research. In this review, we discuss the potential of organoids to close the gap between preclinical in vitro and in vivo models as well as clinical trials in cancer research focusing on drug investigation and development.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{MakbulKhayenkoMaricetal.2021, author = {Makbul, Cihan and Khayenko, Vladimir and Maric, Hans Michael and B{\"o}ttcher, Bettina}, title = {Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {5}, issn = {2076-2607}, doi = {10.3390/microorganisms9050956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236720}, year = {2021}, abstract = {Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an "LLGRMKG" motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide "GSLLGRMKGA" binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies "SLLGRM" as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.}, language = {en} } @article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @article{LinkBorgesJonesetal.2021, author = {Link, Fabian and Borges, Alyssa R. and Jones, Nicola G. and Engstler, Markus}, title = {To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.720521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244682}, year = {2021}, abstract = {Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.}, language = {en} } @article{LiPradaDaminelietal.2021, author = {Li, Kunkun and Prada, Juan and Damineli, Daniel S. C. and Liese, Anja and Romeis, Tina and Dandekar, Thomas and Feij{\´o}, Jos{\´e} A. and Hedrich, Rainer and Konrad, Kai Robert}, title = {An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca\(^{2+}\) and H\(^{+}\) reveals new insights into ion signaling in plants}, series = {New Phytologist}, volume = {230}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239847}, pages = {2292 -- 2310}, year = {2021}, abstract = {Whereas the role of calcium ions (Ca\(^{2+}\)) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca\(^{2+}\) and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca\(^{2+}\)- and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca\(^{2+}\)-dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca\(^{2+}\). In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+-increases and cytosolic acidification by c. 2 min, suggesting a Ca\(^{2+}\)/pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca\(^{2+}\)- and pH-responses. We propose close interrelation in Ca\(^{2+}\)- and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.}, language = {en} } @article{KriegelFritzeThorn2021, author = {Kriegel, Peter and Fritze, Michael-Andreas and Thorn, Simon}, title = {Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short-rotation coppices}, series = {Agricultural and Forest Entomology}, volume = {23}, journal = {Agricultural and Forest Entomology}, number = {4}, doi = {10.1111/afe.12441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239873}, pages = {400 -- 410}, year = {2021}, abstract = {Increasing demand for biomass has led to an on-going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub- and herb cover. Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary.}, language = {en} } @article{HabensteinSchmittLiessemetal.2021, author = {Habenstein, Jens and Schmitt, Franziska and Liessem, Sander and Ly, Alice and Trede, Dennis and Wegener, Christian and Predel, Reinhard and R{\"o}ssler, Wolfgang and Neupert, Susanne}, title = {Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus}, series = {Journal of Neurochemistry}, volume = {158}, journal = {Journal of Neurochemistry}, number = {2}, doi = {10.1111/jnc.15346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239917}, pages = {391 -- 412}, year = {2021}, abstract = {Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.}, language = {en} } @article{WohlwendCravenWeigeltetal.2021, author = {Wohlwend, Michael R. and Craven, Dylan and Weigelt, Patrick and Seebens, Hanno and Winter, Marten and Kreft, Holger and Zurell, Damaris and Sarmento Cabral, Juliano and Essl, Franz and van Kleunen, Mark and Pergl, Jan and Pyšek, Petr and Knight, Tiffany M.}, title = {Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific}, series = {Diversity and Distributions}, volume = {27}, journal = {Diversity and Distributions}, number = {6}, doi = {10.1111/ddi.13260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239925}, pages = {1120 -- 1133}, year = {2021}, abstract = {Aim The Pacific exhibits an exceptional number of naturalized plant species, but the drivers of this high diversity and the associated compositional patterns remain largely unknown. Here, we aim to (a) improve our understanding of introduction and establishment processes and (b) evaluate whether this information is sufficient to create scientific conservation tools, such as watchlists. Location Islands in the Pacific Ocean, excluding larger islands such as New Zealand, Japan, the Philippines and Indonesia. Methods We combined information from the most up-to-date data sources to quantify naturalized plant species richness and turnover across island groups and investigate the effects of anthropogenic, biogeographic and climate drivers on these patterns. In total, we found 2,672 naturalized plant species across 481 islands and 50 island groups, with a total of 11,074 records. Results Most naturalized species were restricted to few island groups, and most island groups have a low number of naturalized species. Island groups with few naturalized species were characterized by a set of widespread naturalized species. Several plant families that contributed many naturalized species globally also did so in the Pacific, particularly Fabaceae and Poaceae. However, many families were significantly over- or under-represented in the Pacific naturalized flora compared to other regions of the world. Naturalized species richness increased primarily with increased human activity and island altitude/area, whereas similarity between island groups in temperature along with richness differences was most important for beta diversity. Main conclusions The distribution and richness of naturalized species can be explained by a small set of drivers. The Pacific region contains many naturalized plant species also naturalized in other regions in the world, but our results highlight key differences such as a stronger role of anthropogenic drivers in shaping diversity patterns. Our results establish a basis for predicting and preventing future naturalizations in a threatened biodiversity hotspot.}, language = {en} } @article{SponslerBratman2021, author = {Sponsler, Douglas B. and Bratman, Eve Z.}, title = {Beekeeping in, of or for the city? A socioecological perspective on urban apiculture}, series = {People and Nature}, volume = {3}, journal = {People and Nature}, number = {3}, doi = {10.1002/pan3.10206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239949}, pages = {550 -- 559}, year = {2021}, abstract = {The term 'urban beekeeping' connotes a host of meanings—sociopolitical, commercial, ecological and personal—beyond the mere description of where bees and beekeepers happen to coincide. Yet, these meanings are seldom articulated explicitly or brought into critical engagement with the relevant fields of urban ecology and political ecology. Beginning with a brief account of the history of urban beekeeping in the United States, we draw upon urban ecological theory to construct a conceptual model of urban beekeeping that distinguishes beekeeping in, of and for the city. In our model, beekeeping in the city describes the mere importation of the traditionally rural practice of beekeeping into urban spaces for the private reasons of the individual beekeeper, whereas beekeeping of the city describes beekeeping that is consciously tailored to the urban context, often accompanied by (semi)professionalization of beekeepers and the formation of local expert communities (i.e. beekeeping associations). Beekeeping for the city describes a shift in mindset in which beekeeping is directed to civic ends beyond the boundaries of the beekeeping community per se. Using this framework, we identify and discuss specific socioecological assets and liabilities of urban beekeeping, and how these relate to beekeeping in, of and for the city. We then formulate actionable guidelines for maturing the practice of urban beekeeping into a beneficent and self-critical form of urban ecological citizenship; these include fostering self-regulation within the beekeeping community, harnessing beekeeping as a 'gateway' experience for a broader rapprochement between urban residents and nature, and recognizing the political-ecological context of beekeeping with respect to matters of socioecological justice.}, language = {en} } @article{MayrKellerPetersetal.2021, author = {Mayr, Antonia V. and Keller, Alexander and Peters, Marcell K. and Grimmer, Gudrun and Krischke, Beate and Geyer, Mareen and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238853}, pages = {7700 -- 7712}, year = {2021}, abstract = {Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.}, language = {en} } @article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} } @article{LeidingerVedderCabral2021, author = {Leidinger, Ludwig and Vedder, Daniel and Cabral, Juliano Sarmento}, title = {Temporal environmental variation may impose differential selection on both genomic and ecological traits}, series = {Oikos}, volume = {130}, journal = {Oikos}, number = {7}, doi = {10.1111/oik.08172}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238945}, pages = {1100 -- 1115}, year = {2021}, abstract = {The response of populations and species to changing conditions determines how community composition will change functionally, including via trait shifts. Selection from standing variation has been suggested to be more efficient than acquiring new mutations. Yet, studies on community trait composition and trait selection largely focus on phenotypic variation in ecological traits, whereas the underlying genomic traits remain understudied. Using a genome-explicit, niche- and individual-based model, we address the potential interactions between genomic and ecological traits shaping communities under an environmental selective forcing, namely temporal positively autocorrelated environmental fluctuation. In this model, all ecological traits are explicitly coded by the genome. For our experiments, we initialized 90 replicate communities, each with ca 350 initial species, characterized by random genomic and ecological trait combinations, on a 2D spatially explicit landscape with two orthogonal gradients (temperature and resource use). We exposed each community to two contrasting scenarios: without (i.e. static environments) and with temporal variation. We then analyzed emerging compositions of both genomic and ecological traits at the community, population and genomic levels. Communities in variable environments were species poorer than in static environments, and populations more abundant, whereas genomes had lower genetic linkage, mean genetic variation and a non-significant tendency towards higher numbers of genes. The surviving genomes (i.e. those selected by variable environments) coded for enhanced environmental tolerance and smaller biomass, which resulted in faster life cycles and thus also in increased potential for evolutionary rescue. Under temporal environmental variation, larger, less linked genomes retained more variation in mean dispersal ability at the population level than at genomic level, whereas the opposite trend emerged for biomass. Our results provide clues to how sexually-reproducing diploid plant communities might react to variable environments and highlights the importance of genomic traits and their interaction with ecological traits for eco-evolutionary responses to changing climates.}, language = {en} } @article{HaackBaikerSchlegeletal.2021, author = {Haack, Stephanie and Baiker, Sarah and Schlegel, Jan and Sauer, Markus and Sparwasser, Tim and Langenhorst, Daniela and Beyersdorf, Niklas}, title = {Superagonistic CD28 stimulation induces IFN-γ release from mouse T helper 1 cells in vitro and in vivo}, series = {European Journal of Immunology}, volume = {51}, journal = {European Journal of Immunology}, number = {3}, doi = {10.1002/eji.202048803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239028}, pages = {738 -- 741}, year = {2021}, abstract = {Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.}, language = {en} } @phdthesis{Eiring2021, author = {Eiring, Patrick}, title = {Super-resolution microscopy of plasma membrane receptors}, doi = {10.25972/OPUS-25004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250048}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Plasma membrane receptors are the most crucial and most commonly studied components of cells, since they not only ensure communication between the extracellular space and cells, but are also responsible for the regulation of cell cycle and cell division. The composition of the surface receptors, the so-called "Receptome", differs and is characteristic for certain cell types. Due to their significance, receptors have been important target structures for diagnostic and therapy in cancer medicine and often show aberrant expression patterns in various cancers compared to healthy cells. However, these aberrations can also be exploited and targeted by different medical approaches, as in the case of personalized immunotherapy. In addition, advances in modern fluorescence microscopy by so-called single molecule techniques allow for unprecedented sensitive visualization and quantification of molecules with an attainable spatial resolution of 10-20 nm, allowing for the detection of both stoichiometric and expression density differences. In this work, the single molecule sensitive method dSTORM was applied to quantify the receptor composition of various cell lines as well as in primary samples obtained from patients with hematologic malignancies. The focus of this work lies on artefact free quantification, stoichiometric analyses of oligomerization states and co localization analyses of membrane receptors. Basic requirements for the quantification of receptors are dyes with good photoswitching properties and labels that specifically mark the target structure without generating background through non-specific binding. To ensure this, antibodies with a predefined DOL (degree of labeling) were used, which are also standard in flow cytometry. First background reduction protocols were established on cell lines prior analyses in primary patient samples. Quantitative analyses showed clear expression differences between the cell lines and the patient cells, but also between individual patients. An important component of this work is the ability to detect the oligomerization states of receptors, which enables a more accurate quantification of membrane receptor densities compared to standard flow cytometry. It also provides information about the activation of a certain receptor, for example of FLT3, a tyrosine kinase, dimerizing upon activation. For this purpose, different well-known monomers and dimers were compared to distinguish the typical localization statistics of single bound antibodies from two or more antibodies that are in proximity. Further experiments as well as co localization analyses proved that antibodies can bind to closely adjacent epitopes despite their size. These analytical methods were subsequently applied for quantification and visualization of receptors in two clinically relevant examples. Firstly, various therapeutically relevant receptors such as CD38, BCMA and SLAMF7 for multiple myeloma, a malignant disease of plasma cells, were analyzed and quantified on patient cells. Furthermore, the influence of TP53 and KRAS mutations on receptor expression levels was investigated using the multiple myeloma cell lines OPM2 and AMO1, showing clear differences in certain receptor quantities. Secondly, FLT3 which is a therapeutic target receptor for acute myeloid leukemia, was quantified and stoichiometrically analyzed on both cell lines and patient cells. In addition, cells that have developed resistance against midostaurin were compared with cells that still respond to this type I tyrosine-kinase-inhibitor for their FLT3 receptor expression and oligomerization state.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{Habenstein2021, author = {Habenstein, Jens}, title = {Neuropeptides in the brain of \(Cataglyphis\) \(nodus\) ants and their role as potential modulators of behavior}, doi = {10.25972/OPUS-24961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {An adequate task allocation among colony members is of particular importance in large insect societies. Some species exhibit distinct polymorphic worker classes which are responsible for a specific range of tasks. However, much more often the behavior of the workers is related to the age of the individual. Ants of the genus Cataglyphis (Foerster 1850) undergo a marked age-related polyethism with three distinct behavioral stages. Newly emerged ants (callows) remain more or less motionless in the nest for the first day. The ants subsequently fulfill different tasks inside the darkness of the nest for up to four weeks (interior workers) before they finally leave the nest to collect food for the colony (foragers). This thesis focuses on the neuronal substrate underlying the temporal polyethism in Cataglyphis nodus ants by addressing following major objectives: (1) Investigating the structures and neuronal circuitries of the Cataglyphis brain to understand potential effects of neuromodulators in specific brain neuropils. (2) Identification and localization of neuropeptides in the Cataglyphis brain. (3) Examining the expression of suitable neuropeptide candidates during behavioral maturation of Cataglyphis workers. The brain provides the fundament for the control of the behavioral output of an insect. Although the importance of the central nervous system is known beyond doubt, the functional significance of large areas of the insect brain are not completely understood. In Cataglyphis ants, previous studies focused almost exclusively on major neuropils while large proportions of the central protocerebrum have been often disregarded due to the lack of clear boundaries. Therefore, I reconstructed a three-dimensional Cataglyphis brain employing confocal laser scanning microscopy. To visualize synapsin-rich neuropils and fiber tracts, a combination of fluorescently labeled antibodies, phalloidin (a cyclic peptide binding to filamentous actin) and anterograde tracers was used. Based on the unified nomenclature for insect brains, I defined traceable criteria for the demarcation of individual neuropils. The resulting three-dimensional brain atlas provides information about 33 distinct synapse-rich neuropils and 30 fiber tracts, including a comprehensive description of the olfactory and visual tracts in the Cataglyphis brain. This three-dimensional brain atlas further allows to assign present neuromodulators to individual brain neuropils. Neuropeptides represent the largest group of neuromodulators in the central nervous system of insects. They regulate important physiological and behavioral processes and have therefore recently been associated with the regulation of the temporal polyethism in social insects. To date, the knowledge of neuropeptides in Cataglyphis ants has been mainly derived from neuropeptidomic data of Camponotus floridanus ants and only a few neuropeptides have been characterized in Cataglyphis. Therefore, I performed a comprehensive transcriptome analysis in Cataglyphis nodus ants and identified peptides by using Q-Exactive Orbitrap mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. This resulted in the characterization of 71 peptides encoded on 49 prepropeptide genes, including a novel neuropeptide-like gene (fliktin). In addition, high-resolution MALDI-TOF MS imaging (MALDI-MSI) was applied for the first time in an ant brain to localize peptides on thin brain cryosections. Employing MALDI-MSI, I was able to visualize the spatial distribution of 35 peptides encoded on 16 genes. To investigate the role of neuropeptides during behavioral maturation, I selected suitable neuropeptide candidates and analyzed their spatial distributions and expression levels following major behavioral transitions. Based on recent studies, I suggested the neuropeptides allatostatin-A (Ast-A), corazonin (Crz) and tachykinin (TK) as potential regulators of the temporal polyethism. The peptidergic neurons were visualized in the brain of C. nodus ants using immunohistochemistry. Independent of the behavioral stages, numerous Ast-A- and TK-immunoreactive (-ir) neurons innervate important high-order integration centers and sensory input regions with cell bodies dispersed all across the cell body rind. In contrast, only four corazonergic neurons per hemisphere were found in the Cataglyphis brain. Their somata are localized in the pars lateralis with axons projecting to the medial protocerebrum and the retrocerebral complex. Number and branching patterns of the Crz-ir neurons were similar across behavioral stages, however, the volume of the cell bodies was significantly larger in foragers than in the preceding behavioral stages. In addition, quantitative PCR analyses displayed increased Crz and Ast-A mRNA levels in foragers, suggesting a concomitant increase of the peptide levels. The task-specific expression of Crz and Ast-A along with the presence in important sensory input regions, high-order integration center, and the neurohormonal organs indicate a sustaining role of the neuropeptides during behavioral maturation of Cataglyphis workers. The present thesis contains a comprehensive reference work for the brain anatomy and the neuropeptidome of Cataglyphis ants. I further demonstrated that neuropeptides are suitable modulators for the temporal polyethism of Cataglyphis workers. The complete dataset provides a solid framework for future neuroethological studies in Cataglyphis ants as well as for comparative studies on insects. This may help to improve our understanding of the functionality of individual brain neuropils and the role of neuropeptides, particularly during behavioral maturation in social insects.}, subject = {Cataglyphis}, language = {en} } @phdthesis{Schuster2021, author = {Schuster, Sarah}, title = {Analysis of \(Trypanosoma\) \(brucei\) motility and the infection process in the tsetse fly vector}, doi = {10.25972/OPUS-19269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192691}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {African trypanosomes are protist pathogens that are infective for a wide spectrum of mammalian hosts. Motility has been shown to be essential for their survival and represents an important virulence factor. Trypanosoma brucei is transmitted by the bite of the bloodsucking tsetse fly, the only vector for these parasites. The voyage through the fly is complex and requires several migration, proliferation and differentiation steps, which take place in a defined order and in specific fly tissues. The first part of this doctoral thesis deals with the establishment of the trypanosome tsetse system as a new model for microswimmer analysis. There is an increasing interdisciplinary interest in microbial motility, but a lack of accessible model systems. Therefore, this work introduces the first enclosed in vivo host parasite system that is suitable for analysis of diverse microswimmer types in specific microenvironments. Several methods were used and adapted to gain unprecedented insights into trypanosome motion, the fly´s interior architecture and the physical interaction between host and parasite. This work provides a detailed overview on trypanosome motile behavior as a function of development in diverse host surroundings. In additional, the potential use of artificial environments is shown. This can be used to partly abstract the complex fly architecture and analyze trypanosome motion in defined nature inspired geometries. In the second part of the thesis, the infection of the tsetse fly is under investigation. Two different trypanosome forms exist in the blood: proliferative slender cells and cell cycle arrested stumpy cells. Previous literature states that stumpy cells are pre adapted to survive inside the fly, whereas slender cells die shortly after ingestion. However, infection experiments in our laboratory showed that slender cells were also potentially infective. During this work, infections were set up so as to minimize the possibility of stumpy cells being ingested, corroborating the observation that slender cells are able to infect flies. Using live cell microscopy and fluorescent reporter cell lines, a comparative analysis of the early development following infection with either slender or stumpy cells was performed. The experiments showed, for the first time, the survival of slender trypanosomes and their direct differentiation to the procyclic midgut stage, contradicting the current view in the field of research. Therefore, we can shift perspectives in trypanosome biology by proposing a revised life cycle model of T. brucei, where both bloodstream stages are infective for the vector.}, subject = {Motilit{\"a}t}, language = {en} } @phdthesis{Andreska2021, author = {Andreska, Thomas}, title = {Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses}, doi = {10.25972/OPUS-17431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply.}, subject = {Brain-derived neurotrophic factor}, language = {en} } @phdthesis{Maistrenko2021, author = {Maistrenko, Oleksandr}, title = {Pangenome analysis of bacteria and its application in metagenomics}, doi = {10.25972/OPUS-21499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214996}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The biosphere harbors a large quantity and diversity of microbial organisms that can thrive in all environments. Estimates of the total number of microbial species reach up to 1012, of which less than 15,000 have been characterized to date. It has been challenging to delineate phenotypically, evolutionary and ecologically meaningful lineages such as for example, species, subspecies and strains. Even within recognized species, gene content can vary considerably between sublineages (for example strains), a problem that can be addressed by analyzing pangenomes, defined as the non-redundant set of genes within a phylogenetic clade, as evolutionary units. Species considered to be ecologically and evolutionary coherent units, however to date it is still not fully understood what are primary habitats and ecological niches of many prokaryotic species and how environmental preferences drive their genomic diversity. Majority of comparative genomics studies focused on a single prokaryotic species in context of clinical relevance and ecology. With accumulation of sequencing data due to genomics and metagenomics, it is now possible to investigate trends across many species, which will facilitate understanding of pangenome evolution, species and subspecies delineation. The major aims of this thesis were 1) to annotate habitat preferences of prokaryotic species and strains; 2) investigate to what extent these environmental preferences drive genomic diversity of prokaryotes and to what extent phylogenetic constraints limit this diversification; 3) explore natural nucleotide identity thresholds to delineate species in bacteria in metagenomics gene catalogs; 4) explore species delineation for applications in subspecies and strain delineation in metagenomics. The first part of the thesis describes methods to infer environmental preferences of microbial species. This data is a prerequisite for the analyses performed in the second part of the thesis which explores how the structure of bacterial pangenomes is predetermined by past evolutionary history and how is it linked to environmental preferences of the species. The main finding in this subchapter that habitat preferences explained up to 49\% of the variance for pangenome structure, compared to 18\% by phylogenetic inertia. In general, this trend indicates that phylogenetic inertia does not limit evolution of pangenome size and diversity, but that convergent evolution may overcome phylogenetic constraints. In this project we show that core genome size is associated with higher environmental ubiquity of species. It is likely this is due to the fact that species need to have more versatile genomes and most necessary genes need to be present in majority of genomes of that species to be highly prevalent. Taken together these findings may be useful for future predictive analyses of ecological niches in newly discovered species. The third part of the thesis explores data-driven, operational species boundaries. I show that homologous genes from the same species from different genomes tend to share at least 95\% of nucleotide identity, while different species within the same genus have lower nucleotide identity. This is in line with other studies showing that genome-wide natural species boundary might be in range of 90-95\% of nucleotide identity. Finally, the fourth part of the thesis discusses how challenges in species delineation are relevant for the identification of meaningful within-species groups, followed by a discussion on how advancements in species delineation can be applied for classification of within-species genomic diversity in the age of metagenomics.}, subject = {Pangenom}, language = {en} } @article{BoffFriedel2021, author = {Boff, Samuel and Friedel, Anna}, title = {Dynamics of nest occupation and homing of solitary bees in painted trap nests}, series = {Ecological Entomology}, volume = {46}, journal = {Ecological Entomology}, number = {2}, doi = {10.1111/een.12965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224605}, pages = {496 -- 499}, year = {2021}, abstract = {1. The oil-collecting bee Centris analis (Fabricius, 1804) is an important pollinator for the Neotropical region. The species can be attracted to nest in human-made cavities. Such trap nests or insect hotels offer the opportunity to study the behaviour of populations in semifield conditions. 2. We studied a newly established trap nest aggregation of C. analis in Mato Grosso do Sul, Brazil and tested the effect that differentially painted nesting options have on the rate of nest foundation, and on the ability of relocating the nest when returning from a foraging trip (homing behaviour). Moreover, we tested if the duration of foraging trips decreased with time. 3. We found that females preferred to nest in painted nests compared to unpainted nests, with blue nests being the most occupied ones, followed by purple, yellow, white, and green. Furthermore, bees improved their homing behaviour with time, however, nest colour did not seem to have an effect on this process. Moreover, we found that bees reduce the duration of their foraging trips with time. This could be an indicator of improved foraging efficiency through learning. 4. These findings could inform a new and fruitful line of research on the behaviour and ecology of trap nesting solitary bees.}, language = {en} } @phdthesis{Solger2021, author = {Solger, Franziska}, title = {Central role of sphingolipids on the intracellular survival of \(Neisseria\) \(gonorrhoeae\) in epithelial cells}, doi = {10.25972/OPUS-24753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae are Gram-negative bacteria with diplococcal shape. As an obligate human pathogen, it is the causative agent of gonorrhoea, a sexually transmitted disease. Gonococci colonize a variety of mucosal tissues, mainly the urogenital tract in men and women. Occasionally N. gonorrhoeae invades the bloodstream, leading to disseminated gonococcal infection. These bacteria possess a repertoire of virulence factors, which expression patterns can be adapted to the environmental conditions of the host. Through the accumulation of antibiotic resistances and in absence of vaccines, some neisserial strains have the potential to spread globally and represent a major public health threat. Therefore, it is necessary to understand the exact molecular mechanisms underlying the successful infection and progression of gonococci within their host. This deeper understanding of neisserial infection and survival mechanisms is needed for the development of new therapeutic agents. In this work, the role of host-cell sphingolipids on the intracellular survival of N. gonorrhoeae was investigated. It was shown that different classes of sphingolipids strongly interact with invasive gonococci in epithelial cells. Therefore, novel and highly specific clickable sphingolipid analogues were applied to study these interactions with this pathogen. The formation of intra- and extracellular sphingosine vesicles, which were able to target gonococci, was observed. This direct interaction led to the uptake and incorporation of sphingosine into the neisserial membrane. Together with in vitro results, sphingosine was identified as a potential bactericidal reagent as part of the host cell defence. By using different classes of sphingolipids and their clickable analogues, essential structural features, which seem to trigger the bacterial uptake, were detected. Furthermore, effects of key enzymes of the sphingolipid signalling pathway were tested in a neutrophil infection model. In conclusion, the combination of click chemistry and infection biology made it possible to shed some light on the dynamic interplay between cellular sphingosine and N. gonorrhoeae. Thereby, a possible "catch-and-kill" mechanism could have been observed.}, subject = {Neisseria gonorrhoeae}, language = {en} } @phdthesis{Kehrberger2021, author = {Kehrberger, Sandra}, title = {Effects of climate warming on the timing of flowering and emergence in a tritrophic relationship: plants - bees - parasitoids}, doi = {10.25972/OPUS-21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213932}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The right timing of phenological events is crucial for species fitness. Species should be highly synchronized with mutualists, but desynchronized with antagonists. With climate warming phenological events advance in many species. However, often species do not respond uniformly to warming temperatures. Species-specific responses to climate warming can lead to asynchrony or even temporal mismatch of interacting species. A temporal mismatch between mutualists, which benefit from each other, can have negative consequences for both interaction partners. For host-parasitoid interactions temporal asynchrony can benefit the host species, if it can temporally escape its parasitoid, with negative consequences for the parasitoid species, but benefit the parasitoid species if it increases synchrony with its host, which can negatively affect the host species. Knowledge about the drivers of phenology and the species-specific responses to these drivers are important to predict future effects of climate change on trophic interactions. In this dissertation I investigated how different drivers act on early flowering phenology and how climate warming affects the tritrophic relationship of two spring bees (Osmia cornuta \& Osmia bicornis), an early spring plant (Pulsatilla vulgaris), which is one of the major food plants of the spring bees, and three main parasitoids of the spring bees (Cacoxenus indagator, Anthrax anthrax, Monodontomerus). In Chapter II I present a study in which I investigated how different drivers and their change over the season affect the reproductive success of an early spring plant. For that I recorded on eight calcareous grasslands around W{\"u}rzburg, Germany the intra-seasonal changes in pollinator availability, number of co-flowering plants and weather conditions and studied how they affect flower visitation rates, floral longevity and seed set of the early spring plant P. vulgaris. I show that bee abundances and the number of hours, which allowed pollinator foraging, were low at the beginning of the season, but increased over time. However, flower visitation rates and estimated total number of bee visits were higher on early flowers of P. vulgaris than later flowers. Flower visitation rates were also positively related to seed set. Over time and with increasing competition for pollinators by increasing numbers of co-flowering plants flower visitation rates decreased. My data shows that a major driver for early flowering dates seems to be low interspecific competition for pollinators, but not low pollinator abundances and unfavourable weather conditions. Chapter III presents a study in which I investigated the effects of temperature on solitary bee emergence and on the flowering of their food plant and of co-flowering plants in the field. Therefore I placed bee cocoons of two spring bees (O. cornuta \& O. bicornis) on eleven calcareous grasslands which differed in mean site temperature. On seven of these grasslands the early spring plant P. vulgaris occurred. I show that warmer temperatures advanced mean emergence in O. cornuta males. However, O. bicornis males and females of both species did not shift their emergence. Compared to the bees P. vulgaris advanced its flowering phenology more strongly with warmer temperatures. Co-flowering plants did not shift flowering onset. I suggest that with climate warming the first flowers of P. vulgaris face an increased risk of pollinator limitation whereas for bees a shift in floral resources may occur. In Chapter IV I present a study in which I investigated the effects of climate warming on host-parasitoid relationships. I studied how temperature and photoperiod affect emergence phenology in two spring bees (O. cornuta \& O. bicornis) and three of their main parasitoids (C. indagator, A. anthrax, Monodontomerus). In a climate chamber experiment with a crossed design I exposed cocoons within nest cavities and cocoons outside of nest cavities to two different temperature regimes (long-term mean of W{\"u}rzburg, Germany and long-term mean of W{\"u}rzburg + 4 °C) and three photoperiods (W{\"u}rzburg vs. Sn{\aa}sa, Norway vs. constant darkness) and recorded the time of bee and parasitoid emergence. I show that warmer temperatures advanced emergence in all studied species, but bees advanced less strongly than parasitoids. Consequently, the time period between female bee emergence and parasitoid emergence decreased in the warm temperature treatment compared to the cold one. Photoperiod influenced the time of emergence only in cocoons outside of nest cavities (except O. bicornis male emergence). The data also shows that the effect of photoperiod compared to the effect of temperature on emergence phenology was much weaker. I suggest that with climate warming the synchrony of emergence phenologies of bees and their parasitoids will amplify. Therefore, parasitism rates in solitary bees might increase which can negatively affect reproductive success and population size. In this dissertation I show that for early flowering spring plants low interspecific competition for pollinators with co-flowering plants is a major driver of flowering phenology, whereas other drivers, like low pollinator abundances and unfavourable weather conditions are only of minor importance. With climate warming the strength of different drivers, which act on the timing of phenological events, can change, like temperature. I show that warmer temperatures advance early spring plant flowering more strongly than bee emergence and flowering phenology of later co-flowering plants. Furthermore, I show that warmer temperatures advance parasitoid emergence more strongly than bee emergence. Whereas temperature changes can lead to non-uniform temporal shifts, I demonstrate that geographic range shifts and with that altered photoperiods will not change emergence phenology in bees and their parasitoids. In the tritrophic system I investigated in this dissertation climate warming may negatively affect the reproductive success of the early spring plant and the spring bees but not of the parasitoids, which may even benefit from warming temperatures.}, subject = {Biene }, language = {en} } @article{GrobTritscherGruebeletal.2021, author = {Grob, Robin and Tritscher, Clara and Gr{\"u}bel, Kornelia and Stigloher, Christian and Groh, Claudia and Fleischmann, Pauline N. and R{\"o}ssler, Wolfgang}, title = {Johnston's organ and its central projections in Cataglyphis desert ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {8}, doi = {10.1002/cne.25077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225679}, pages = {2138 -- 2155}, year = {2021}, abstract = {The Johnston's organ (JO) in the insect antenna is a multisensory organ involved in several navigational tasks including wind-compass orientation, flight control, graviception, and, possibly, magnetoreception. Here we investigate the three dimensional anatomy of the JO and its neuronal projections into the brain of the desert ant Cataglyphis, a marvelous long-distance navigator. The JO of C. nodus workers consists of 40 scolopidia comprising three sensory neurons each. The numbers of scolopidia slightly vary between different sexes (female/male) and castes (worker/queen). Individual scolopidia attach to the intersegmental membrane between pedicel and flagellum of the antenna and line up in a ring-like organization. Three JO nerves project along the two antennal nerve branches into the brain. Anterograde double staining of the antennal afferents revealed that JO receptor neurons project to several distinct neuropils in the central brain. The T5 tract projects into the antennal mechanosensory and motor center (AMMC), while the T6 tract bypasses the AMMC via the saddle and forms collaterals terminating in the posterior slope (PS) (T6I), the ventral complex (T6II), and the ventrolateral protocerebrum (T6III). Double labeling of JO and ocellar afferents revealed that input from the JO and visual information from the ocelli converge in tight apposition in the PS. The general JO anatomy and its central projection patterns resemble situations in honeybees and Drosophila. The multisensory nature of the JO together with its projections to multisensory neuropils in the ant brain likely serves synchronization and calibration of different sensory modalities during the ontogeny of navigation in Cataglyphis.}, language = {en} } @article{HojsgaardSchartl2021, author = {Hojsgaard, Diego and Schartl, Manfred}, title = {Skipping sex: A nonrecombinant genomic assemblage of complementary reproductive modules}, series = {BioEssays}, volume = {43}, journal = {BioEssays}, number = {1}, doi = {10.1002/bies.202000111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225818}, year = {2021}, abstract = {The unusual occurrence and developmental diversity of asexual eukaryotes remain a puzzle. De novo formation of a functioning asexual genome requires a unique assembly of sets of genes or gene states to disrupt cellular mechanisms of meiosis and gametogenesis, and to affect discrete components of sexuality and produce clonal or hemiclonal offspring. We highlight two usually overlooked but essential conditions to understand the molecular nature of clonal organisms, that is, a nonrecombinant genomic assemblage retaining modifiers of the sexual program, and a complementation between altered reproductive components. These subtle conditions are the basis for physiologically viable and genetically balanced transitions between generations. Genomic and developmental evidence from asexual animals and plants indicates the lack of complementation of molecular changes in the sexual reproductive program is likely the main cause of asexuals' rarity, and can provide an explanatory frame for the developmental diversity and lability of developmental patterns in some asexuals as well as for the discordant time to extinction estimations.}, language = {en} } @article{SprengerMuesseHartkeetal.2021, author = {Sprenger, Philipp P. and M{\"u}sse, Christian and Hartke, Juliane and Feldmeyer, Barbara and Schmitt, Thomas and Gebauer, Gerhard and Menzel, Florian}, title = {Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant-ant association}, series = {Ecological Entomology}, volume = {46}, journal = {Ecological Entomology}, number = {3}, doi = {10.1111/een.13002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228215}, pages = {562 -- 572}, year = {2021}, abstract = {1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein- and carbohydrate-rich baits, but at protein-rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery-dominance trade-off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence.}, language = {en} } @article{DuMaYanez‐Serranoetal.2021, author = {Du, Baoguo and Ma, Yuhua and Y{\´a}{\~n}ez-Serrano, Ana Maria and Arab, Leila and Fasbender, Lukas and Alfarraj, Saleh and Albasher, Gadah and Hedrich, Rainer and White, Philip J. and Werner, Christiane and Rennenberg, Heinz}, title = {Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding}, series = {New Phytologist}, volume = {229}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17123}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228226}, pages = {3318 -- 3329}, year = {2021}, abstract = {In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO\(_{2}\) assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO\(_{4}\) did not affect CO\(_{2}\)/H\(_{2}\)O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding.}, language = {en} } @article{SeiboldHothornGossneretal.2021, author = {Seibold, Sebastian and Hothorn, Torsten and Gossner, Martin M. and Simons, Nadja K. and Bl{\"u}thgen, Nico and M{\"u}ller, J{\"o}rg and Ambarl{\i}, Didem and Ammer, Christian and Bauhus, J{\"u}rgen and Fischer, Markus and Habel, Jan C. and Penone, Caterina and Schall, Peter and Schulze, Ernst-Detlef and Weisser, Wolfgang W.}, title = {Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228309}, pages = {144 -- 148}, year = {2021}, abstract = {Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land-use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1-18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter- and longer-term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671-674) based on a 10-year multi-site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include 'year' as random effect, as suggested by Daskalova et al. (2021), fail to detect non-linear trends and assume that consecutive years are independent samples which is questionable for insect time-series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short-term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions.}, language = {en} } @phdthesis{Groma2021, author = {Groma, Michaela}, title = {Identification of a novel LysR-type transcriptional regulator in \(Staphylococcus\) \(aureus\)}, doi = {10.25972/OPUS-24675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Staphylococcus aureus is a facultative pathogen which causes a variety of infections. The treatment of staphylococcal infections is complicated because the bacteria is resistant to multiple common antibiotics. S. aureus is also known to express a variety of virulence factors which modulate the host's immune response in order to colonize and invade certain host cells, leading to the host cell's death. Among the virulence factors is a LysR-type transcriptional regulator (lttr) which is required for efficient colonization of secondary organs. In a recent report, which used transposon screening on S. aureus-infected mice, it was found that the amount of a novel lttr852 mutant bacteria recovered from the kidneys was significantly lower compared to the wildtype strains. This doctoral thesis therefore focused on phenotypical and molecular characterization of lttr852. An assessment of the S. aureus biofilm formation and the hemolysis revealed that lttr852 was not involved in the regulation of these virulence processes. RNA-sequencing for potential target genes of lttr852 identified differentially expressed genes that are involved in branched chain amino-acid biosynthesis, methionine sulfoxide reductase and copper transport, as well as a reduced transcription of genes encoding urease and of components of pyrimidine nucleotides. Promoter fusion with GFP reporters as as well as OmniLog were used to identify conditions under which the lttr852 was active. The promoter studies showed that glucose and high temperatures diminish the lttr852 promoter activity in a time-dependent manner, while micro-aerobic conditions enhanced the promoter activity. Copper was found to be a limiting factor. In addition, the impact on promoter activity of the lttr852 was tested in the presence of various regulators, but no central link to the genes involved in virulence was identified. The present work, thus, showed that lttr852, a new member of the class of LysR-type transcriptional regulators in S. aureus, has an important role in the rapid adaptation of S. aureus to the changing microenvironment of the host.}, language = {en} }