@article{FanLiChaoetal.2015, author = {Fan, Ben and Li, Lei and Chao, Yanjie and F{\"o}rstner, Konrad and Vogel, J{\"o}rg and Borriss, Rainer and Wu, Xiao-Qin}, title = {dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138369}, pages = {e0142002}, year = {2015}, abstract = {Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.}, language = {en} } @inproceedings{FoerstnerHagedornKoltzenburgetal.2011, author = {F{\"o}rstner, Konrad and Hagedorn, Gregor and Koltzenburg, Claudia and Kubke, Fabiana and Mietchen, Daniel}, title = {Collaborative platforms for streamlining workflows in Open Science}, series = {Proceedings of the 6th Open Knowledge Conference}, booktitle = {Proceedings of the 6th Open Knowledge Conference}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101678}, year = {2011}, abstract = {Despite the internet's dynamic and collaborative nature, scientists continue to produce grant proposals, lab notebooks, data files, conclusions etc. that stay in static formats or are not published online and therefore not always easily accessible to the interested public. Because of limited adoption of tools that seamlessly integrate all aspects of a research project (conception, data generation, data evaluation, peerreviewing and publishing of conclusions), much effort is later spent on reproducing or reformatting individual entities before they can be repurposed independently or as parts of articles. We propose that workflows - performed both individually and collaboratively - could potentially become more efficient if all steps of the research cycle were coherently represented online and the underlying data were formatted, annotated and licensed for reuse. Such a system would accelerate the process of taking projects from conception to publication stages and allow for continuous updating of the data sets and their interpretation as well as their integration into other independent projects. A major advantage of such work ows is the increased transparency, both with respect to the scientific process as to the contribution of each participant. The latter point is important from a perspective of motivation, as it enables the allocation of reputation, which creates incentives for scientists to contribute to projects. Such work ow platforms offering possibilities to fine-tune the accessibility of their content could gradually pave the path from the current static mode of research presentation into a more coherent practice of open science.}, language = {en} }