@phdthesis{Schramm2006, author = {Schramm, Claudia}, title = {Ultraschneller Ladungstransfer und Energierelaxation an Grenzfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18344}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Ziel der vorliegenden Arbeit ist es, den ultraschnellen Transport und die Energierelaxation von Ladungstr{\"a}gern an der Grenzfl{\"a}che von heterogenen Systemen zu untersuchen. Dabei wird gezeigt, dass zeitaufgel{\"o}ste Zweifarb-Mehrphotonen-Photoemissionsspektroskopie eine gute Methode ist, um Einblick in das Relaxationsverhalten und den dynamischen Ladungstr{\"a}gertransport in den untersuchten Systemen zu erhalten. Es werden Messungen an zwei unterschiedlichen Systemen vorgestellt: Silbernanoteilchen auf Graphit und ultrad{\"u}nne Silberfilme auf Silizium. Die Untersuchung von heterogenen Systemen erfordert einen selektiven Photoemissionsprozess, d.h. es muss m{\"o}glich sein, Photoemission von den Nanoteilchen bzw. vom Silberfilm und vom Substrat zu trennen. F{\"u}r Silbernanoteilchen auf Graphit kann dies erreicht werden, indem die Abfragewellenl{\"a}nge auf die Resonanz des Plasmon-Polaritons abgestimmt wird. So erh{\"a}lt man dominant Photoemission von den Nanoteilchen, Photoemission vom Graphit kann dagegen vernachl{\"a}ssigt werden. Die transiente Elektronenverteilung in den Nanoteilchen kann aus der Form der Photoemissionsspektren bestimmt werden. Die transiente Verschiebung der Spektren gibt Aufschluss {\"u}ber die Auf- oder Entladung des Nanoteilchens. Dadurch wird es hier m{\"o}glich, zeitaufgel{\"o}ste Photoemissionsspektroskopie als ultraschnelle Sonde im Nanometerbereich zu verwenden. Zusammen mit einem Modell f{\"u}r die Relaxation und den Ladungstransfer ist es m{\"o}glich, quantitative Ergebnisse f{\"u}r die Kopplung zwischen Nanoteilchen und Substrat zu erhalten. Das vorgestellte semiempirische Modell enth{\"a}lt dabei zus{\"a}tzlich zu Termen f{\"u}r die Relaxation in Nanoteilchen und Substrat die M{\"o}glichkeit eines zeitabh{\"a}ngigen Ladungstransfers zwischen Teilchen und Substrat. Die Kopplung wird durch eine Tunnelbarriere beschrieben, deren starke Energieabh{\"a}ngigkeit der Transferwahrscheinlichkeit die experimentellen Ergebnisse gut wiedergibt. Die St{\"a}rke des Ladungstransfers und das zeitabh{\"a}ngige Verhalten sind dabei stark von den gew{\"a}hlten Parametern f{\"u}r die Tunnelbarriere abh{\"a}ngig. Insbesondere zeigt der Vergleich der Simulationsergebnisse mit dem Experiment, dass transienter Ladungstransfer ein wichtiger Effekt ist und die K{\"u}hlungsdynamik, die im Elektronengas der Nanoteilchen beobachtet wird, wesentlich beeinflusst. Auch im Fall der ultrad{\"u}nnen Silberfilme auf Silizium ist es durch gezielte Wahl der Wellenl{\"a}ngen m{\"o}glich, die Photoelektronenausbeute selektiv dem Silberfilm oder dem Siliziumsubstrat zuzuordnen. Bei Anregung mit 3.1 eV Photonenenergie dominiert Photoemission aus dem Silberfilm, w{\"a}hrend es bei Anregung mit 4.65 eV m{\"o}glich ist, Informationen {\"u}ber die Grenzschicht und das Siliziumsubstrat zu erhalten. Intensit{\"a}tsabh{\"a}ngige Messungen zeigen den Einfluss der optischen Anregung auf den Verlauf der Schottkybarriere an der Metall-Halbleiter-Grenzschicht. Dieser Effekt ist als Oberfl{\"a}chen-Photospannung bekannt. Die Anregung mit 4.65 eV Photonenenergie bewirkt zus{\"a}tzlich eine S{\"a}ttigung langlebiger Zust{\"a}nde an der Metall-Halbleiter-Grenzfl{\"a}che, was zu einer linearen Abh{\"a}ngigkeit der Photoemissionsausbeute von der Laserfluenz f{\"u}hrt. Zeitaufgel{\"o}ste Zweifarb-Mehrphotonen-Photoemissionsmessungen machen es m{\"o}glich, die Elektronendynamik an der Metall-Halbleiter-Grenzschicht und im Siliziumsubstrat zu untersuchen. Das Relaxationsverhalten der Ladungstr{\"a}ger zeigt dabei eine komplexe Dynamik, die auf die Anregung von Ladungstr{\"a}gern in unterschiedlichen Bereichen zur{\"u}ckgef{\"u}hrt werden kann. Dabei dominiert f{\"u}r verschiedene Zwischenzustandsenergien die Dynamik entweder aus dem Film, der Grenzschicht oder dem Siliziumsubstrat, so dass das Relaxationsverhalten grob in drei unterschiedliche Energiebereiche eingeteilt werden kann. Im Silizium k{\"o}nnen aufgrund der Bandl{\"u}cke mit 3.1 eV Photonenenergie Elektronen nur bis zu Zwischenzustandsenergien von EF + 2.0 eV angeregt werden. In der Tat stimmen die Relaxationszeiten, die man in diesem Bereich aus den zeitaufgel{\"o}sten Messungen bestimmt, mit Werten von reinen Siliziumsubstraten {\"u}berein. F{\"u}r Zwischenzustandsenergien oberhalb von EF + 2.0 eV findet man {\"u}berwiegend Anregung im Silberfilm. Die Relaxationszeiten f{\"u}r diese Energien entsprechen Werten von Silberfilmen auf einem isolierenden Substrat. F{\"u}r sehr niedrige Zwischenzustandsenergien unterhalb von EF + 0.6 eV sind die Zust{\"a}nde wegen der vorliegenden experimentellen Bedingungen permanent besetzt. Der Anregepuls regt Elektronen aus diesen Zust{\"a}nden an und f{\"u}hrt daher in diesem Bereich zu einer Reduktion der Besetzung nach der Anregung mit Licht. Die Zeitkonstante f{\"u}r die Wiederbesetzung liegt im Bereich von mehreren 100 ps bis Nanosekunden. Solch lange Zeiten sind aus Rekombinationsprozessen an der Dipolschicht von Metall-Halbleiter-Grenzfl{\"a}chen bekannt. Zeitaufgel{\"o}ste Mehrphotonen-Photoemissionsspektroskopie ist also sehr gut geeignet, das komplexe Relaxationsverhalten und den Ladungstr{\"a}gertransfer an der Grenzfl{\"a}che eines Schichtsystems zu untersuchen.}, subject = {Elektronischer Transport}, language = {de} } @phdthesis{Dantscher2006, author = {Dantscher, Sandra}, title = {Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolek{\"u}lkontakte unter Femtosekundenbeleuchtung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molek{\"u}lkontakte eingesetzt. Zur Pr{\"a}paration der Tunnelkontakte standen zwei verschiedene Methoden zur Verf{\"u}gung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die M{\"o}glichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu ver{\"a}ndern, w{\"a}hrend die elektromigrierten Kontakte einen durch die Pr{\"a}parationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molek{\"u}len handelt es sich um Dithiole, die {\"u}ber eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensit{\"a}ten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molek{\"u}lkontakte) waren bis zu den auftretenden Maximalintensit{\"a}ten von 10^7 Wcm^-2 stabil. F{\"u}r alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und betr{\"a}gt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zur{\"u}ckgef{\"u}hrt. Aus der relativen Gr{\"o}ße des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter {\"U}berinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Gr{\"o}ßenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abh{\"a}ngt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erkl{\"a}rt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugeh{\"o}rige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekund{\"a}ren heißen Elektronen zum Strom ist. Auch bei den Molek{\"u}lkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensit{\"a}t abh{\"a}ngt. Sie wird, {\"a}hnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erkl{\"a}ren. Es ist anzunehmen, dass die Zunahme der Elektrodenl{\"a}nge durch eine Umordnung auf atomarer L{\"a}ngenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht gekl{\"a}rt werden. Messungen, die den Elektrodenabstand um einige AA ver{\"a}nderten, lieferten weitere Indizien f{\"u}r die Komplexit{\"a}t der Molek{\"u}lkontakte. So trat in manchen F{\"a}llen eine starke Korrelation zwischen Ver{\"a}nderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad f{\"u}r beide Signale hindeutet. Andererseits ver{\"a}nderten sich die beiden Str{\"o}me teilweise aber auch unabh{\"a}ngig voneinander, was nur durch mehrere parallele Transportkan{\"a}le im Kontakt erkl{\"a}rt werden kann. Zus{\"a}tzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabh{\"a}ngige Str{\"o}me identifiziert. Sie sind in der gleichen Gr{\"o}ßenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, n{\"a}mlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung f{\"u}hrt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Gr{\"o}ßenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensit{\"a}ten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelstr{\"o}me zeigen eine quadratische Intensit{\"a}tsabh{\"a}ngigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabh{\"a}ngigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel f{\"u}r Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Kr{\"u}mmungsradius der Elektrodenspitze und Barrierenh{\"o}he im Tunnelkontakt) war es m{\"o}glich, die Spannungsabh{\"a}ngigkeit des lichtinduzierten Signals zu reproduzieren.}, subject = {Tunnelkontakt}, language = {de} }