@phdthesis{Mutz2013, author = {Mutz, Sebastian}, title = {Dynamic Statistical Modelling of Climate-Related Mass Balance Changes in Norway}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114799}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The glaciers in Norway exert a strong influence on Norwegian economy and society. Unlike many glaciers elsewhere and despite ongoing climate change and warming, many of them showed renewed advances and positive net mass changes in the 1980's and 1990's, followed by rapid retreats and mass losses since 2000. This difference in behaviour may be attributed to differences and shifts in the glaciological regime - the differences in the magnitude of impacts of climatic and non-climatic geographical factors on the glacier mass. This study investigates the influence of various atmospheric variables on mass balance changes of a selection of glaciers in Norway by means of Pearson correlation analyses and cross-validated stepwise multiple regression analyses. The analyses are carried out for three time periods (1949-2008, 1949-1988, 1989-2008) separately in order to take into consideration the possible shift in the glaciological regime in the 1980's. The atmospheric variables are constructed from ERA40 and NCEP/NCAR re-analysis datasets and include regional means of seasonal air temperature and precipitation rates and atmospheric circulation indices. The multiple regression models trained in these time periods are then applied to predictors reconstructed from the CMIP3 climate model dataset to generate an estimate for mass changes from the year 1950 to 2100. The temporal overlap of estimates and observations is used for calibration. Finally, observed atmospheric states in seasons that are characterised by a particularly positive or negative mass balance are categorised into time periods of modelled climate by the application of a Bayesian classification procedure. The strongest influence on winter mass balance is exerted by different indices of the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM) and precipitation. The correlation coefficients and explained variances determined from the multiple regression analyses reveal an East-West gradient, suggesting a weaker influence of the NAO and NAM on glaciers underlying a more continental regime. The highest correlation coefficients and explained variances were obtained for the 1989-2008 time period, which might be due to a strong and predominantly positive phase of the NAO. Multi-model ensemble means of the estimates show a mass loss for all three eastern glaciers, while the estimates for the more maritime glaciers are ambivalent. In general, the estimates show a greater sensitivity to the training time period than to the greenhouse gas emission scenarios according to which the climates were simulated. The average net mass change by the end of 2100 is negative for all glaciers except for the northern Engabreen. For many glaciers, the Bayesian classification of observed atmospheric states into time periods of modelled climate reveals a decrease in probability of atmospheric states favouring extremes in winter, and an increase in probability of atmospheric states favouring extreme mass loss in summer for the distant future (2071-2100). This pattern of probabilities for the ablation season is most pronounced for glaciers underlying a continental and intermediate regime.}, subject = {Norwegen}, language = {en} } @phdthesis{Dietz2013, author = {Dietz, Andreas}, title = {Central Asian Snow Cover Characteristics between 1986 and 2012 derived from Time Series of Medium Resolution Remote Sensing Data}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The eminent importance of snow cover for climatic, hydrologic, anthropogenic, and economic reasons has been widely discussed in scientific literature. Up to 50\% of the Northern Hemisphere is covered by snow at least temporarily, turning snow to the most prevalent land cover types at all. Depending on regular precipitation and temperatures below freezing point it is obvious that a changing climate effects snow cover characteristics fundamentally. Such changes can have severe impacts on local, national, and even global scale. The region of Central Asia is not an exception from this general rule, but are the consequences accompanying past, present, and possible future changes in snow cover parameters of particular importance. Being characterized by continental climate with hot and dry summers most precipitation accumulates during winter and spring months in the form of snow. The population in this 4,000,000 kmĀ² vast area is strongly depending on irrigation to facilitate agriculture. Additionally, electricity is often generated by hydroelectric power stations. A large proportion of the employed water originates from snow melt during spring months, implying that changes in snow cover characteristics will automatically affect both the total amount of obtainable water and the time when this water becomes available. The presented thesis explores the question how the spatial extent of snow covered surface has evolved since the year 1986. This investigation is based on the processing of medium resolution remote sensing data originating from daily MODIS and AVHRR sensors, thus forming a unique approach of snow cover analysis in terms of temporal and spatial resolution. Not only duration but also onset and melt of snow coverage are tracked over time, analyzing for systematic changes within this 26 years lasting time span. AVHRR data are processed from raw Level 1B orbit data to Level 3 thematic snow cover products. Both, AVHRR and MODIS snow maps undergo a further post-processing, producing daily full-area mosaics while completely eliminating inherent cloud cover. Snow cover parameters are derived based on these daily and cloud-free time series, allowing for a detailed analysis of current status and changes. The results confirm the predictions made by coarse resolution predictions from climate models: Central Asian snow cover is changing, posing new challenges for the ecosystem and future water supply. The changes, however, are not aimed at only one direction. Regions with decreasing snow cover exist as well as those where the duration of snow cover increases. A shift towards earlier snow cover start and melt can be observed, posing a serious challenge to water management authorities due to a changed runoff regime.}, subject = {Zentralasien}, language = {en} }