@phdthesis{Schnabel2008, author = {Schnabel, Alexander}, title = {Ergebnisse dreier quantitativer, systematischer {\"U}bersichtsarbeiten (Cochrane Reviews) zur Wirksamkeit der Hyperbaren Sauerstofftherapie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28103}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Ziel dieser Arbeit ist es, anhand dreier quantitativer, systematischer {\"U}bersichtsarbeiten (Cochrane Reviews) die M{\"o}glichkeiten und Grenzen der EBM zu beleuchten. Dabei wird exemplarisch die Verwendung von hyperbarem Sauerstoff zur Therapie von chronischen Wunden, eines akuten isch{\"a}mischen Schlaganfalls, sowie von Migr{\"a}ne- und Clusterkopfschmerzen untersucht.}, subject = {H{\"a}matogene Oxidationstherapie}, language = {de} } @article{NeuhausBurekDjuzenovaetal.2012, author = {Neuhaus, Winfried and Burek, Malgorzata and Djuzenova, Cholpon C and Thal, Serge C and Koepsell, Hermann and Roewer, Norbert and F{\"o}rster, Carola Y}, title = {Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67241}, year = {2012}, abstract = {During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907\% after 6 h OGD and was still higher (210\%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.}, subject = {Blut-Hirn-Schranke}, language = {en} } @article{NeuhausGaiserMahringeretal.2014, author = {Neuhaus, Winfried and Gaiser, Fabian and Mahringer, Anne and Franz, Jonas and Riethm{\"u}ller, Christoph and F{\"o}rster, Carola}, title = {The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118297}, pages = {352}, year = {2014}, abstract = {Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have established a blood-brain barrier in vitro model based on mouse cell line cerebEND and applied oxygen/glucose deprivation (OGD). The role of astrocytes in this disease model was investigated by using cell line C6. Transwell studies pointed out that addition of astrocytes during OGD increased the barrier damage significantly in comparison to the endothelial monoculture shown by changes of transendothelial electrical resistance as well as fluorescein permeability data. Analysis on mRNA and protein levels by qPCR, western blotting and immunofluorescence microscopy of tight junction molecules claudin-3,-5,-12, occludin and ZO-1 revealed that their regulation and localisation is associated with the functional barrier breakdown. Furthermore, soluble factors of astrocytes, OGD and their combination were able to induce changes of functionality and expression of ABC-transporters Abcb1a (P-gp), Abcg2 (bcrp), and Abcc4 (mrp4). Moreover, the expression of proteases (matrixmetalloproteinases MMP-2, MMP-3, MMP-9, and t-PA) as well as of their endogenous inhibitors (TIMP-1, TIMP-3, PAI-1) was altered by astrocyte factors and OGD which resulted in significant changes of total MMP and t-PA activity. Morphological rearrangements induced by OGD and treatment with astrocyte factors were confirmed at a nanometer scale using atomic force microscopy. In conclusion, astrocytes play a major role in blood-brain barrier breakdown during OGD in vitro.}, language = {en} } @phdthesis{Zaum2018, author = {Zaum, Sebastian}, title = {Die hCMEC/D3-Zelllinie als humanes in-vitro-Modell der Blut-Hirn-Schranke im isch{\"a}mischen Schlaganfall}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166499}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der Schlaganfall ist eine Krankheit mit großer Bedeutung, sowohl f{\"u}r die Betroffenen wie auch unter volkswirtschaftlichen Gesichtspunkten. In der Erforschung neuer und besserer Therapiemethoden f{\"u}r den isch{\"a}mischen Schlaganfall ist ein gutes in-vitro-Modell der Blut-Hirn-Schranke unerl{\"a}sslich, da ein Teil der Sch{\"a}digung des ZNS durch einen Zusammenbruch dieser Barriere verursacht wird. Die hCMEC/D3-Zelllinie stellt ein solches Modell dar; mit steigender Dauer der isch{\"a}mischen Stoffwechsellage zeigt sich eine Erh{\"o}hung der LDH-Konzentration als Marker f{\"u}r das Absterben der Zellen sowie ein R{\"u}ckgang der Zellvitalit{\"a}t. Zudem l{\"a}sst sich eine Entz{\"u}ndungsreaktion mit Anstieg der Marker TNF-Alpha und VEGF, sowie tendenziell auch von Interleukin 6 und Interleukin 8 beobachten, welche auch auf eine Barriereschw{\"a}chung hindeutet. Aus vorherigen Versuchen bekannte Tight junctions-Proteine wie Claudin 1 und Occludin waren in D3-Zellen unter isch{\"a}mischen Bedingungen nicht ver{\"a}ndert, Claudin 5 war in der PCR vermindert exprimiert. Die f{\"u}r die Barriereschw{\"a}chung verantwortlichen Strukturproteine m{\"u}ssen durch weitere Versuche identifiziert werden. Eine m{\"o}gliche Erh{\"o}hung der Expression des Transkriptionsfaktors ZO-1 k{\"o}nnte unter diesen Bedingungen einen Mechanismus der Barriereschw{\"a}chung darstellen. Die Expression des Glukokortikoidrezeptors war in Monokultur-Versuchen mit D3-Zellen nach Isch{\"a}mie erniedrigt. Dies stellt eine Gemeinsamkeit mit Versuchen mit Zelllinien tierischen Ursprungs dar; in diesen zeigten die Zellen durch Degradation des Glukokortikoidrezeptors ein fehlendes Ansprechen auf eine Glukokortikoid-Behandlung. In der Cokultur der D3-Zellen mit Gliomzellen der C6-Zelllinie zeigte sich jedoch eine Erh{\"o}hung der GR-Expression. Eine Cokultur kann den komplexen Aufbau der Blut-Hirn-Schranke, mit Beteiligung mehrerer Zelltypen, besser darstellen als Versuche mit nur einer Zelllinie. Die Erh{\"o}hung der GR-Expression in diesem humanen in-vitro-Modell der Blut-Hirn-Schranke steht im Gegensatz zu den in-vitro-Versuchen mit anderen Zelllinien. Dies k{\"o}nnte eine m{\"o}gliche Erkl{\"a}rung liefern, warum die Erkenntnisse aus diesen Versuchen bisher nicht zu einer Verbesserung der Evidenz der Glukokortikoid-Therapie beim isch{\"a}mischen Schlaganfall beigetragen haben. Zudem zeigt die Fluoreszenzf{\"a}rbung von D3-Zellen, dass diese auch unter Isch{\"a}mie auf Glukokortikoide reagieren.}, subject = {stroke}, language = {de} } @article{GabbertDillingMeybohmetal.2020, author = {Gabbert, Lydia and Dilling, Christina and Meybohm, Patrick and Burek, Malgorzata}, title = {Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro}, series = {Frontiers in Pharmacology}, volume = {11}, journal = {Frontiers in Pharmacology}, issn = {1663-9812}, doi = {10.3389/fphar.2020.590144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219828}, year = {2020}, abstract = {Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs.}, language = {en} } @article{SunBlecharzLangMałeckietal.2022, author = {Sun, Aili and Blecharz-Lang, Kinga G. and Małecki, Andrzej and Meybohm, Patrick and Nowacka-Chmielewska, Marta M. and Burek, Malgorzata}, title = {Role of microRNAs in the regulation of blood-brain barrier function in ischemic stroke and under hypoxic conditions in vitro}, series = {Frontiers in Drug Delivery}, volume = {2}, journal = {Frontiers in Drug Delivery}, issn = {2674-0850}, doi = {10.3389/fddev.2022.1027098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291423}, year = {2022}, abstract = {The blood-brain barrier (BBB) is a highly specialized structure that separates the brain from the blood and allows the exchange of molecules between these two compartments through selective channels. The breakdown of the BBB is implicated in the development of severe neurological diseases, especially stroke and traumatic brain injury. Oxygen-glucose deprivation is used to mimic stroke and traumatic brain injury in vitro. Pathways that trigger BBB dysfunction include an imbalance of oxidative stress, excitotoxicity, iron metabolism, cytokine release, cell injury, and cell death. MicroRNAs are small non-coding RNA molecules that regulate gene expression and are emerging as biomarkers for the diagnosis of central nervous system (CNS) injuries. In this review, the regulatory role of potential microRNA biomarkers and related therapeutic targets on the BBB is discussed. A thorough understanding of the potential role of various cellular and linker proteins, among others, in the BBB will open further therapeutic options for the treatment of neurological diseases.}, language = {en} } @phdthesis{Sun2023, author = {Sun, Aili}, title = {Effect of Tjap1 knock-down on blood-brain barrier properties under normal and hypoxic conditions}, doi = {10.25972/OPUS-34645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346450}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stroke is one of the leading causes of mortality and disability worldwide. The blood-brain barrier (BBB) plays an important role in maintaining brain homeostasis by tightly regulating the exchange of substances between circulating blood and brain parenchyma. BBB disruption is a common pathologic feature of stroke and traumatic brain injury. Understanding the cellular and molecular events that affect the BBB after ischaemic brain injury is important to improve patient prognosis. We have previously shown that microRNA-212/132 is elevated in hypoxic brain microvascular endothelial cells and acts through suppressing the expression of direct microRNA-212/132 target genes with function at the BBB: claudin-1, junctional adhesion molecule 3 (Jam3) and tight-junction associated protein 1 (Tjap1). While the role of claudin-1 and Jam3 at the BBB is well known, the role of Tjap1 is still unclear. The aim of this work was therefore to characterize the role of Tjap1 in brain endothelial cells using a knock-down (KD) approach in established murine in vitro BBB models cEND and cerebEND. Tjap1 KD was established by stable transfection of a plasmid expressing shRNA against Tjap1. The successful downregulation of Tjap1 mRNA and protein was demonstrated by qPCR and Western blot. Tjap1 KD resulted in impaired barrier properties of endothelial cells as shown by lower TEER values and higher paracellular permeability. Interestingly, the Tjap1 KD cells showed lower cell viability and proliferation but migrated faster in a wound healing assay. In the tube formation assay, Tjap1 KD cell lines showed a lower angiogenic potential due to a significantly lower tube length and number as well as a lower amount of branching points in formed capillaries. Tjap1 KD cells showed changes in gene and protein expression. The TJ proteins claudin-5, Jam3 and ZO-1 were significantly increased in Tjap1 KD cell lines, while occludin was strongly decreased. In addition, efflux pump P-glycoprotein was downregulated in Tjap1 KD cells. Oxygen-glucose deprivation (OGD) is a method to mimic stroke in vitro. Brain endothelial cell lines treated with OGD showed lower barrier properties compared to cells cultured under normal condition. These effects were more severe in Tjap1 KD cells, indicating active Tjap1 involvement in the OGD response in brain microvascular endothelial cells. We thus have shown that Tjap1 contributes to a tight barrier of the BBB, regulates cell viability and proliferation of endothelial cells, suppresses their migration and promotes new vessel formation. This means that Tjap1 function is important for mature BBB structure in health and disease.}, subject = {Schlaganfall}, language = {en} }