@phdthesis{Heubeck2003, author = {Heubeck, Christian}, title = {Zusammensetzung eukaryotischer RNase P aus pflanzlichen Zellkernen und Plastiden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Ribonuklease P (RNase\&\#61472;P) ist eine essentielle Endonuklease, welche die 5'-Flanke von pre-tRNAs entfernt. In nahezu allen bisher untersuchten Organismen und Organellen besteht das Holoenzym aus einer RNA-Untereinheit und einer Protein-Komponente. Nur die Zusammensetzung des Enzyms in den Chloroplasten und Mitochochondrien mehrzelliger Eukaryonten scheint unklar. Eine RNA-Untereinheit konnte hier bis jetzt nicht nachgewiesen werden. Um den Aufbau der RNase\&\#61472;P aus photosynthetischen Organellen zu kl{\"a}ren, wurde die RNase\&\#61472;P aus den Cyanellen von Cyanophora paradoxa untersucht. Das Enzym enth{\"a}lt eine RNA, welche im Gegensatz zu bakteriellen RNase\&\#61472;P-RNAs nicht in der Lage ist, die pre-tRNA-Prozessierung unter in\&\#61472;vitro-Bedingungen durchzuf{\"u}hren, obwohl sie eindeutig dem cy- anobakteriellen Strukturtyp zugeordnet werden kann. Die Cyanellen-RNase\&\#61472;P-RNA aus C.\&\#61472;paradoxa kann mit rekombinanten cyanobakteriellen RNase\&\#61472;P-Proteinen zum katalytisch aktiven Holoenzym rekonstituiert werden. Das Einf{\"u}hren der hochkonservierten Nukleotide G22 und G213 in die Cyanellen-RNase\&\#61472;P-RNA f{\"u}hrt nicht zu signifikanten Unterschieden im Prozessierungsverhalten des heterologen Holoenzyms. Durch Mutationsanalyse einer cyanobakteriellen RNase\&\#61472;P-RNA an den entsprechenden Positionen wurde gezeigt, dass diese Konsensus-Nukleotide keinen essentiellen Einfluss auf die Katalyse aus{\"u}ben. Die funktionelle Charakterisierung der RNase\&\#61472;P-RNA aus den Cyanellen von G. nostochinearum best{\"a}tigt die Ergebnisse f{\"u}r C.\&\#61472;paradoxa. Die RNA besitzt keine Ribozym-Aktivit{\"a}t und kann mit cyanobakteriellen RNase\&\#61472;P-Proteinen zum aktiven Holoenzym rekonstituiert werden. Um zu kl{\"a}ren, ob die fehlende Ribozym-Aktivit{\"a}t der Cyanellen-RNase\&\#61472;P-RNAs auf das Fehlen der F{\"a}higkeit zur Substratbindung zur{\"u}ckzuf{\"u}hren ist, wurden zirkular permutierte Cyanellen-RNase P-RNAs mit kovalent verkn{\"u}pften pre-tRNAs konstruiert. Entsprechende Transkripte weisen keine Ribozymaktivit{\"a}t auf, k{\"o}nnen aber mit cyanobakteriellem RNase\&\#61472;P-Protein zum aktiven Komplex rekonstituiert werden. Die Reaktion l{\"a}uft intramolekular, da die Prozessierungsreaktion mit zirkular permutierten Konstrukten nicht durch reife tRNAs gehemmt wird. Zur Identifizierung der Protein-Untereinheit(en) aus Cyanellen-RNase\&\#61472;P wurden polyklonale Antik{\"o}rper gegen das rekombinate RNase\&\#61472;P-Protein aus dem Cyanobakterium Synechocystis PCC 6803 gewonnen. Immunoblots zeigen spezifische Signale im homologen und im Cyanellen-Extrakt, jedoch keinerlei Bindung des RNase P Proteins aus E. coli. Die hohe Spezifit{\"a}t der Antik{\"o}rper f{\"u}r ein Cyanellen-RNase P-Protein konnte durch Immunopr{\"a}zipitations-Experimente best{\"a}tigt werden. Da im vollst{\"a}ndig sequenzierten Cyanellen-Genom keine zu RNase\&\#61472;P-Proteinen homologe Sequenz identifiziert werden kann, muss das Cyanellen RNase\&\#61472;P-Protein im Kern codiert sein. Um die Proteinkomponente der Cyanellen-RNase P zu klonieren, wurde eine cDNA-Expressionsbank f{\"u}r Cyanophora paradoxa angelegt. Versuche zum Immuno-Screening wurden aufgrund eines schlechten Signal\&\#61472;:\&\#61472;Hintergrund-Verh{\"a}ltnisses nicht weiter verfolgt. Durch Screening der cDNA-Expressionsbank mit Cyanellen-RNase\&\#61472;P-RNA konnten zwei Cyanophora-Proteine mit hoher Homologie zu eukaryontischen RNA-bindenden Proteinen identifiziert werden. Das Molekulargewicht des C.\&\#61472;paradoxa-Holoenzyms wurde durch Ultrazentrifugation im Glyceringradienten zu etwa 280\&\#61472;kD bestimmt. RNase\&\#61472;P-Aktivit{\"a}t und RNase\&\#61472;P-RNA-Untereinheit korrelieren im Gradienten mit einem 30\&\#61472;kD-Protein, welches im Immunoblot mit cyanobakteriellen RNase\&\#61472;P-Protein-Antik{\"o}rpern spezifisch erkannt wird. Das Cyanellen-Holoenzym zeigt in wesentlichen Merkmalen eine {\"U}bereinstimmung mit eukaryontischer RNase\&\#61472;P. Dennoch scheint die katalytische Aktivit{\"a}t in der RNA-Untereinheit lokalisiert zu sein, da die native, relativ große Cyanellen-Protein-Untereinheit ohne Funktionsverlust gegen sehr viel kleinere cyanobakterielle Protein-Untereinheiten ausgetauscht werden kann. Die Protein-Komponente der Cyanellen RNase\&\#61472;P scheint deshalb trotz ihrer Gr{\"o}ßenzunahme im Vergleich zu ihren evolutiven, bakteriellen Vorfahren, keine weiteren essentiellen Aufgaben {\"u}bernommen zu haben. Eukaryontische RNase\&\#61472;P ist aus bis zu zehn Protein-Untereinheiten aufgebaut. Durch Genom-Analyse konnte in Arabidopsis thaliana das potentielle RNase\&\#61472;P-Protein Pop1 identifiziert werden. Mit der experimentell best{\"a}tigten Identit{\"a}t dieses Proteins wurde erstmals ein RNase\&\#61472;P-Protein aus A.\&\#61472;thaliana eindeutig identifiziert. Durch spezifische Antik{\"o}rper gegen dieses Protein kann RNase\&\#61472;P-Aktivit{\"a}t aus Weizen-Extrakt pr{\"a}zipitiert werden.}, subject = {Plastide}, language = {de} } @phdthesis{Gimple2004, author = {Gimple, Olaf}, title = {Substratbindung und Katalyse in RNase P RNA vom cyanobakteriellen Typ}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Ribonuklease P (RNase P) ist eine essentielle Endonuklease, welche die 5'-Flanke von pre-tRNAs entfernt. Die RNase P RNA des Cyanobakteriums Prochlorococcus marinus ist in vitro katalytisch aktiv und bevorzugt in heterologen Prozessierungssystemen Substrate mit vollst{\"a}ndigem 3'-CCA-Ende. Diese Substratspezifit{\"a}t widerspricht den Erwartungen, da tRNAs in P. marinus nicht mit dem CCA-Ende codiert sind und die RNase P RNA auch nicht das GGU-Bindungsmotiv f{\"u}r diese CCA-Enden aufweist. Um die Substratspezifit{\"a}t und Aufbau des Ribozym-Substrat-Komplex von P. marinus RNase P RNA im homologen System untersuchen zu k{\"o}nnen, wurden Transkriptionsklone f{\"u}r P. marinus pre- und mat-tRNAArgCCU konstruiert, mit denen nach entsprechender Restriktionshydrolyse Transkripte mit stufenweise verk{\"u}rzten 3'-CCA-Ende synthetisiert werden k{\"o}nnen. Durch enzymkinetische Untersuchungen der Prozessierung durch P. marinus RNase P RNA wurde unter steady-state-Bedingungen f{\"u}r pre-tRNACCA eine Michaelis-Menten Konstante von 6,92 µM ermittelt. Die Entfernung von A76 und C75 des 3'-CCA-Endes f{\"u}hrt zu einer Erh{\"o}hung der KM (7,13 µM bzw. 19,68µM). Diese Substrate werden folglich weniger stark gebunden, was sich auch in der freien Bindungsenthalpie von 0,02 und 0,65 kcal/mol ausdr{\"u}ckt. Die Entfernung des vollst{\"a}ndigen 3'-CCA-Endes f{\"u}hrt zu einer erheblichen Erniedrigung der KM (0,83µM) und zu einer energetisch beg{\"u}nstigten, st{\"a}rkeren Substratbindung (-1,31 kcal/mol). P. marinus RNase RNase P RNA zeigt folglich bei der in vitro Prozessierung im homologen System unter steady-state-Bedingungen eine Substratspezifit{\"a}t f{\"u}r das Substrat mit deletiertem 3'-CCA-Ende. Durch die Methode des Crosslinking, die in dieser Arbeit etabliert und optimiert wurde, k{\"o}nnen RNA-Protein und RNA-RNA Interaktionen nachgewiesen werden. Mit ihr wurde die Bindung von Substrat und Produkt im Komplex mit der RNase P RNA untersucht. Durch interne Modifizierung der P. marinus RNase P RNA-Komponente mit dem photosensiblen Nukleotidanalogon s4U wurden Kontaktstellen in 5'-Flanke, Acceptor-Stamm, D-Stamm, D-Schleife, Anticodon-Schleife und in der variablen Schleife der P. marinus pre-tRNAArg identifiziert. Diese lokalisierten Kontaktstellen stehen denen in der 5'-Flanke, dem Acceptor-Stamm und der 3'-Flanke, wie sie f{\"u}r den Ribozym-Substrat-Komplex mit E. coli RNase P RNA identifiziert wurden, gegen{\"u}ber. In P. marinus RNase P RNA werden folglich alternative Kontaktstellen zur Substratbindung benutzt. Mit Hilfe der hier {\"u}berexprimierten E. coli Nukleotidyltransferase, konnte pre- und mat-tRNAArg durch eine neue Synthesestrategie am 3'-CCA-Ende mit dem Crosslink-Reagenz Azidophenacyl (APA) modifiziert werden. Durch die Positionierung von APA am 5'-Terminus von pre- und mat-tRNAArg wurden weitere modifizierte tRNAs synthetisiert. Durch Crosslink-Experimente im homologen P. marinus System mit diesen modifizierten pre- und mat-tRNAArg-Varianten wurden die selben Regionen des katalytischen Zentrums (J18/2, Region P15/P16, J5/15) der RNase P RNA identifiziert, wie sie von E. coli und B. subtilis RNase P RNA bekannt sind. Dies bedeutet, dass die 5'-Flanke, die Prozessierungsstelle und das 3'-CCA-Ende der tRNAs auf einer vergleichbaren Oberfl{\"a}che positioniert werden wie in anderen Ribozymen. Durch die fehlende Fixierung des 3'-CCA-Endes {\"u}ber Basenpaarungen mit dem GGU-Bindungsmotiv werden die tRNAs in P. marinus RNase P RNA weniger starr an das Ribozym gebunden und das 3'-CCA-Ende besitzt eine flexiblere Positionierung im Komplex mit dem Ribozym. Die Existenz unterschiedlicher Crosslink-Muster in P6, P18, J5/15 und J3/4 zeigt, dass pre-tRNAs und reife tRNAs durch verschiedene Modi an das P. marinus Ribozym gebunden werden. Die Identifizierung von vernetzten Nukleotiden in P15, J15/16, P16 und J16/15, die mit vergleichbaren modifizierten tRNAs in E. coli RNase P RNA nicht gefunden wurden, belegen, dass in P. marinus RNase P RNA ein anderer Produkt-Bindungs-Modus existiert als in E. coli. Erstmals konnten in dieser Arbeit auch zu erwartende Interaktionen mit dem katalytischen Zentrum identifiziert werden, die in bisherigen Crosslink-Experimenten in E. coli und B. subtilis RNase P RNA nicht oder nur geringf{\"u}gig auftraten. Um die erhaltenen Ergebnisse besser veranschaulichen zu k{\"o}nnen, wurde mit dem Programm ERNA 3D ein Raumstrukturmodell f{\"u}r P. marinus RNase P RNA und tRNAArg erstellt. Die RNase P RNA der Cyanellen von Cyanophora paradoxa, ist in vitro katalytisch inaktiv. Um zu kl{\"a}ren, ob die fehlende Ribozym-Aktivit{\"a}t dieser RNase P RNA auf eine fehlerhafte Substratbindung zur{\"u}ckzuf{\"u}hren ist, sollten Crosslink-Experimente mit den modifizierten P. marinus tRNAArg durchgef{\"u}hrt werden. Es konnte gezeigt werden, dass 5'- und 3'-modifizierte pre-tRNAs in C. paradoxa in einem anderen Modus gebunden werden, als durch die katalytisch aktive P. marinus RNase P RNA.}, subject = {Prochlorococcus marinus}, language = {de} }