@phdthesis{Scherz2024, author = {Scherz, Jan}, title = {Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields}, doi = {10.25972/OPUS-34920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods. The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.}, subject = {Fluid-Struktur-Wechselwirkung}, language = {en} } @phdthesis{Koerner2024, author = {K{\"o}rner, Jacob}, title = {Theoretical and numerical analysis of Fokker-Planck optimal control problems by first- and second-order optimality conditions}, doi = {10.25972/OPUS-36299}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a variety of Fokker--Planck (FP) optimal control problems are investigated. Main emphasis is put on a first-- and second--order analysis of different optimal control problems, characterizing optimal controls, establishing regularity results for optimal controls, and providing a numerical analysis for a Galerkin--based numerical scheme. The Fokker--Planck equation is a partial differential equation (PDE) of linear parabolic type deeply connected to the theory of stochastic processes and stochastic differential equations. In essence, it describes the evolution over time of the probability distribution of the state of an object or system of objects under the influence of both deterministic and stochastic forces. The FP equation is a cornerstone in understanding and modeling phenomena ranging from the diffusion and motion of molecules in a fluid to the fluctuations in financial markets. Two different types of optimal control problems are analyzed in this thesis. On the one hand, Fokker--Planck ensemble optimal control problems are considered that have a wide range of applications in controlling a system of multiple non--interacting objects. In this framework, the goal is to collectively drive each object into a desired state. On the other hand, tracking--type control problems are investigated, commonly used in parameter identification problems or stemming from the field of inverse problems. In this framework, the aim is to determine certain parameters or functions of the FP equation, such that the resulting probability distribution function takes a desired form, possibly observed by measurements. In both cases, we consider FP models where the control functions are part of the drift, arising only from the deterministic forces of the system. Therefore, the FP optimal control problem has a bilinear control structure. Box constraints on the controls may be present, and the focus is on time--space dependent controls for ensemble--type problems and on only time--dependent controls for tracking--type optimal control problems. In the first chapter of the thesis, a proof of the connection between the FP equation and stochastic differential equations is provided. Additionally, stochastic optimal control problems, aiming to minimize an expected cost value, are introduced, and the corresponding formulation within a deterministic FP control framework is established. For the analysis of this PDE--constrained optimal control problem, the existence, and regularity of solutions to the FP problem are investigated. New \$L^\infty\$--estimates for solutions are established for low space dimensions under mild assumptions on the drift. Furthermore, based on the theory of Bessel potential spaces, new smoothness properties are derived for solutions to the FP problem in the case of only time--dependent controls. Due to these properties, the control--to--state map, which associates the control functions with the corresponding solution of the FP problem, is well--defined, Fr{\´e}chet differentiable and compact for suitable Lebesgue spaces or Sobolev spaces. The existence of optimal controls is proven under various assumptions on the space of admissible controls and objective functionals. First--order optimality conditions are derived using the adjoint system. The resulting characterization of optimal controls is exploited to achieve higher regularity of optimal controls, as well as their state and co--state functions. Since the FP optimal control problem is non--convex due to its bilinear structure, a first--order analysis should be complemented by a second--order analysis. Therefore, a second--order analysis for the ensemble--type control problem in the case of \$H^1\$--controls in time and space is performed, and sufficient second--order conditions are provided. Analogous results are obtained for the tracking--type problem for only time--dependent controls. The developed theory on the control problem and the first-- and second--order optimality conditions is applied to perform a numerical analysis for a Galerkin discretization of the FP optimal control problem. The main focus is on tracking-type problems with only time--dependent controls. The idea of the presented Galerkin scheme is to first approximate the PDE--constrained optimization problem by a system of ODE--constrained optimization problems. Then, conditions on the problem are presented such that the convergence of optimal controls from one problem to the other can be guaranteed. For this purpose, a class of bilinear ODE--constrained optimal control problems arising from the Galerkin discretization of the FP problem is analyzed. First-- and second--order optimality conditions are established, and a numerical analysis is performed. A discretization with linear finite elements for the state and co--state problem is investigated, while the control functions are approximated by piecewise constant or piecewise quadratic continuous polynomials. The latter choice is motivated by the bilinear structure of the optimal control problem, allowing to overcome the discrepancies between a discretize--then--optimize and optimize--then--discretize approach. Moreover, second--order accuracy results are shown using the space of continuous, piecewise quadratic polynomials as the discrete space of controls. Lastly, the theoretical results and the second--order convergence rates are numerically verified.}, subject = {Parabolische Differentialgleichung}, language = {en} } @phdthesis{Birke2024, author = {Birke, Claudius B.}, title = {Low Mach and Well-Balanced Numerical Methods for Compressible Euler and Ideal MHD Equations with Gravity}, doi = {10.25972/OPUS-36330}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Physical regimes characterized by low Mach numbers and steep stratifications pose severe challenges to standard finite volume methods. We present three new methods specifically designed to navigate these challenges by being both low Mach compliant and well-balanced. These properties are crucial for numerical methods to efficiently and accurately compute solutions in the regimes considered. First, we concentrate on the construction of an approximate Riemann solver within Godunov-type finite volume methods. A new relaxation system gives rise to a two-speed relaxation solver for the Euler equations with gravity. Derived from fundamental mathematical principles, this solver reduces the artificial dissipation in the subsonic regime and preserves hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy inequality, preserves positivity of density and internal energy, and suppresses checkerboard modes. The second scheme is designed to solve the equations of ideal MHD and combines different approaches. In order to deal with low Mach numbers, it makes use of a low-dissipation version of the HLLD solver and a partially implicit time discretization to relax the CFL time step constraint. A Deviation Well-Balancing method is employed to preserve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude of spatial discretization errors in strongly stratified setups. The third scheme relies on an IMEX approach based on a splitting of the MHD equations. The slow scale part of the system is discretized by a time-explicit Godunov-type method, whereas the fast scale part is discretized implicitly by central finite differences. Numerical dissipation terms and CFL time step restriction of the method depend solely on the slow waves of the explicit part, making the method particularly suited for subsonic regimes. Deviation Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria. The three schemes are applied to various numerical experiments for the compressible Euler and ideal MHD equations, demonstrating their ability to accurately simulate flows in regimes with low Mach numbers and strong stratification even on coarse grids.}, subject = {Magnetohydrodynamik}, language = {en} } @phdthesis{Bossert2024, author = {Bossert, Patrick}, title = {Statistical structure and inference methods for discrete high-frequency observations of SPDEs in one and multiple space dimensions}, doi = {10.25972/OPUS-36113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The focus of this thesis is on analysing a linear stochastic partial differential equation (SPDE) with a bounded domain. The first part of the thesis commences with an examination of a one-dimensional SPDE. In this context, we construct estimators for the parameters of a parabolic SPDE based on discrete observations of a solution in time and space on a bounded domain. We establish central limit theorems for a high-frequency asymptotic regime, showing substantially smaller asymptotic variances compared to existing estimation methods. Moreover, asymptotic confidence intervals are directly feasible. Our approach builds upon realized volatilities and their asymptotic illustration as the response of a log-linear model with a spatial explanatory variable. This yields efficient estimators based on realized volatilities with optimal rates of convergence and minimal variances. We demonstrate our results by Monte Carlo simulations. Extending this framework, we analyse a second-order SPDE model in multiple space dimensions in the second part of this thesis and develop estimators for the parameters of this model based on discrete observations in time and space on a bounded domain. While parameter estimation for one and two spatial dimensions was established in recent literature, this is the first work that generalizes the theory to a general, multi-dimensional framework. Our methodology enables the construction of an oracle estimator for volatility within the underlying model. For proving central limit theorems, we use a high-frequency observation scheme. To showcase our results, we conduct a Monte Carlo simulation, highlighting the advantages of our novel approach in a multi-dimensional context.}, subject = {Stochastische partielle Differentialgleichung}, language = {en} } @phdthesis{Biersack2024, author = {Biersack, Florian}, title = {Topological Properties of Quasiconformal Automorphism Groups}, doi = {10.25972/OPUS-35917}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359177}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The goal of this thesis is to study the topological and algebraic properties of the quasiconformal automorphism groups of simply and multiply connected domains in the complex plain, in which the quasiconformal automorphism groups are endowed with the supremum metric on the underlying domain. More precisely, questions concerning central topological properties such as (local) compactness, (path)-connectedness and separability and their dependence on the boundary of the corresponding domains are studied, as well as completeness with respect to the supremum metric. Moreover, special subsets of the quasiconformal automorphism group of the unit disk are investigated, and concrete quasiconformal automorphisms are constructed. Finally, a possible application of quasiconformal unit disk automorphisms to symmetric cryptography is presented, in which a quasiconformal cryptosystem is defined and studied.}, subject = {Quasikonforme Abbildung}, language = {en} } @phdthesis{Dippell2023, author = {Dippell, Marvin}, title = {Constraint Reduction in Algebra, Geometry and Deformation Theory}, doi = {10.25972/OPUS-30167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301670}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {To study coisotropic reduction in the context of deformation quantization we introduce constraint manifolds and constraint algebras as the basic objects encoding the additional information needed to define a reduction. General properties of various categories of constraint objects and their compatiblity with reduction are examined. A constraint Serre-Swan theorem, identifying constraint vector bundles with certain finitely generated projective constraint modules, as well as a constraint symbol calculus are proved. After developing the general deformation theory of constraint algebras, including constraint Hochschild cohomology and constraint differential graded Lie algebras, the second constraint Hochschild cohomology for the constraint algebra of functions on a constraint flat space is computed.}, subject = {Differentialgeometrie}, language = {en} } @article{Weishaeupl2023, author = {Weish{\"a}upl, Sebastian}, title = {The weak Gram law for Hecke \(L\)-functions}, series = {The Ramanujan Journal}, volume = {60}, journal = {The Ramanujan Journal}, number = {4}, issn = {1382-4090}, doi = {10.1007/s11139-022-00638-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324404}, pages = {981-997}, year = {2023}, abstract = {We generalize a theorem by Titchmarsh about the mean value of Hardy's \(Z\)-function at the Gram points to the Hecke \(L\)-functions, which in turn implies the weak Gram law for them. Instead of proceeding analogously to Titchmarsh with an approximate functional equation we employ a different method using contour integration.}, language = {en} } @article{LuMoenius2023, author = {Lu, Lu and M{\"o}nius, Katja}, title = {Algebraic degree of Cayley graphs over abelian groups and dihedral groups}, series = {Journal of Algebraic Combinatorics}, volume = {57}, journal = {Journal of Algebraic Combinatorics}, number = {3}, issn = {0925-9899}, doi = {10.1007/s10801-022-01190-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324380}, pages = {753-761}, year = {2023}, abstract = {For a graph \(\Gamma\) , let K be the smallest field containing all eigenvalues of the adjacency matrix of \(\Gamma\) . The algebraic degree \(\deg (\Gamma )\) is the extension degree \([K:\mathbb {Q}]\). In this paper, we completely determine the algebraic degrees of Cayley graphs over abelian groups and dihedral groups.}, language = {en} } @article{GreefrathOldenburgSilleretal.2023, author = {Greefrath, Gilbert and Oldenburg, Reinhard and Siller, Hans-Stefan and Ulm, Volker and Weigand, Hans-Georg}, title = {Mathematics students' characteristics of basic mental models of the derivative}, series = {Journal f{\"u}r Mathematik-Didaktik}, volume = {44}, journal = {Journal f{\"u}r Mathematik-Didaktik}, number = {1}, issn = {0173-5322}, doi = {10.1007/s13138-022-00207-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324317}, pages = {143-169}, year = {2023}, abstract = {The concept of derivative is characterised with reference to four basic mental models. These are described as theoretical constructs based on theoretical considerations. The four basic mental models—local rate of change, tangent slope, local linearity and amplification factor—are not only quantified empirically but are also validated. To this end, a test instrument for measuring students' characteristics of basic mental models is presented and analysed regarding quality criteria. Mathematics students (n = 266) were tested with this instrument. The test results show that the four basic mental models of the derivative can be reconstructed among the students with different characteristics. The tangent slope has the highest agreement values across all tasks. The agreement on explanations based on the basic mental model of rate of change is not as strongly established among students as one would expect due to framework settings in the school system by means of curricula and educational standards. The basic mental model of local linearity plays a rather subordinate role. The amplification factor achieves the lowest agreement values. In addition, cluster analysis was conducted to identify different subgroups of the student population. Moreover, the test results can be attributed to characteristics of the task types as well as to the students' previous experiences from mathematics classes by means of qualitative interpretation. These and other results of students' basic mental models of the derivative are presented and discussed in detail.}, language = {en} } @article{SillerElschenbroichGreefrathetal.2023, author = {Siller, Hans-Stefan and Elschenbroich, Hans-J{\"u}rgen and Greefrath, Gilbert and Vorh{\"o}lter, Katrin}, title = {Mathematical modelling of exponential growth as a rich learning environment for mathematics classrooms}, series = {ZDM Mathematics Education}, volume = {55}, journal = {ZDM Mathematics Education}, number = {1}, issn = {1863-9690}, doi = {10.1007/s11858-022-01433-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324393}, pages = {17-33}, year = {2023}, abstract = {Mathematical concepts are regularly used in media reports concerning the Covid-19 pandemic. These include growth models, which attempt to explain or predict the effectiveness of interventions and developments, as well as the reproductive factor. Our contribution has the aim of showing that basic mental models about exponential growth are important for understanding media reports of Covid-19. Furthermore, we highlight how the coronavirus pandemic can be used as a context in mathematics classrooms to help students understand that they can and should question media reports on their own, using their mathematical knowledge. Therefore, we first present the role of mathematical modelling in achieving these goals in general. The same relevance applies to the necessary basic mental models of exponential growth. Following this description, based on three topics, namely, investigating the type of growth, questioning given course models, and determining exponential factors at different times, we show how the presented theoretical aspects manifest themselves in teaching examples when students are given the task of reflecting critically on existing media reports. Finally, the value of the three topics regarding the intended goals is discussed and conclusions concerning the possibilities and limits of their use in schools are drawn.}, language = {en} } @article{SteudingTongsomporn2023, author = {Steuding, J{\"o}rn and Tongsomporn, Janyarak}, title = {On the order of growth of Lerch zeta functions}, series = {Mathematics}, volume = {11}, journal = {Mathematics}, number = {3}, issn = {2227-7390}, doi = {10.3390/math11030723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303981}, year = {2023}, abstract = {We extend Bourgain's bound for the order of growth of the Riemann zeta function on the critical line to Lerch zeta functions. More precisely, we prove L(λ, α, 1/2 + it) ≪ t\(^{13/84+ϵ}\) as t → ∞. For both, the Riemann zeta function as well as for the more general Lerch zeta function, it is conjectured that the right-hand side can be replaced by t\(^ϵ\) (which is the so-called Lindel{\"o}f hypothesis). The growth of an analytic function is closely related to the distribution of its zeros.}, language = {en} } @article{HeinsRothWaldmann2023, author = {Heins, Michael and Roth, Oliver and Waldmann, Stefan}, title = {Convergent star products on cotangent bundles of Lie groups}, series = {Mathematische Annalen}, volume = {386}, journal = {Mathematische Annalen}, number = {1-2}, issn = {0025-5831}, doi = {10.1007/s00208-022-02384-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324324}, pages = {151-206}, year = {2023}, abstract = {For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T\(^*\)G thanks to its homogeneity. We define a nuclear Fr{\´e}chet algebra of certain analytic functions on T\(^*\)G, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter \(\hbar\). This nuclear Fr{\´e}chet algebra is realized as the completed (projective) tensor product of a nuclear Fr{\´e}chet algebra of entire functions on G with an appropriate nuclear Fr{\´e}chet algebra of functions on \({\mathfrak {g}}^*\). The passage to the Weyl-ordered star product, i.e. the Gutt star product on T\(^*\)G, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on \(\hbar\).}, language = {en} } @article{JotzMehtaPapantonis2023, author = {Jotz, M. and Mehta, R. A. and Papantonis, T.}, title = {Modules and representations up to homotopy of Lie n-algebroids}, series = {Journal of Homotopy and Related Structures}, volume = {18}, journal = {Journal of Homotopy and Related Structures}, number = {1}, issn = {2193-8407}, doi = {10.1007/s40062-022-00322-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324333}, pages = {23-70}, year = {2023}, abstract = {This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general \(n\in {\mathbb {N}}\). The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie n-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie n-algebroids are used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.}, language = {en} } @article{GerberQuarderGreefrathetal.2023, author = {Gerber, Sebastian and Quarder, Jascha and Greefrath, Gilbert and Siller, Hans-Stefan}, title = {Promoting adaptive intervention competence for teaching simulations and mathematical modelling with digital tools}, series = {Frontiers in Education}, volume = {8}, journal = {Frontiers in Education}, issn = {2504-284X}, doi = {10.3389/feduc.2023.1141063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323701}, year = {2023}, abstract = {Providing adaptive, independence-preserving and theory-guided support to students in dealing with real-world problems in mathematics lessons is a major challenge for teachers in their professional practice. This paper examines this challenge in the context of simulations and mathematical modelling with digital tools: in addition to mathematical difficulties when autonomously working out individual solutions, students may also experience challenges when using digital tools. These challenges need to be closely examined and diagnosed, and might - if necessary - have to be overcome by intervention in such a way that the students can subsequently continue working independently. Thus, if a difficulty arises in the working process, two knowledge dimensions are necessary in order to provide adapted support to students. For teaching simulations and mathematical modelling with digital tools, more specifically, these knowledge dimensions are: pedagogical content knowledge about simulation and modelling processes supported by digital tools (this includes knowledge about phases and difficulties in the working process) and pedagogical content knowledge about interventions during the mentioned processes (focussing on characteristics of suitable interventions as well as their implementation and effects on the students' working process). The two knowledge dimensions represent cognitive dispositions as the basis for the conceptualisation and operationalisation of a so-called adaptive intervention competence for teaching simulations and mathematical modelling with digital tools. In our article, we present a domain-specific process model and distinguish different types of teacher interventions. Then we describe the design and content of a university course at two German universities aiming to promote this domain-specific professional adaptive intervention competence, among others. In a study using a quasi-experimental pre-post design (N = 146), we confirm that the structure of cognitive dispositions of adaptive intervention competence for teaching simulations and mathematical modelling with digital tools can be described empirically by a two-dimensional model. In addition, the effectiveness of the course is examined and confirmed quantitatively. Finally, the results are discussed, especially against the background of the sample and the research design, and conclusions are derived for possibilities of promoting professional adaptive intervention competence in university courses.}, language = {en} } @phdthesis{Jia2023, author = {Jia, Xiaoxi}, title = {Augmented Lagrangian Methods invoking (Proximal) Gradient-type Methods for (Composite) Structured Optimization Problems}, doi = {10.25972/OPUS-32374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323745}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis, first, is devoted to the theoretical and numerical investigation of an augmented Lagrangian method for the solution of optimization problems with geometric constraints, subsequently, as well as constrained structured optimization problems featuring a composite objective function and set-membership constraints. It is then concerned to convergence and rate-of-convergence analysis of proximal gradient methods for the composite optimization problems in the presence of the Kurdyka--{\L}ojasiewicz property without global Lipschitz assumption.}, subject = {Optimierung}, language = {en} } @phdthesis{Barth2022, author = {Barth, Dominik}, title = {Computation of multi-branch-point covers and applications in Galois theory}, doi = {10.25972/OPUS-27702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {We present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups. As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial for \(PSp_6(2)\) admits infinitely many totally real specializations. Next, we present the first (to the best of our knowledge) explicit polynomials for the 2-transitive linear groups \(PSL_4(3)\) and \(PGL_4(3)\) of degree 40, and the imprimitive group \(Aut(PGL_4(3))\) of degree 80. Additionally, we negatively answer a question by K{\"o}nig whether there exists a degree-63 rational function with rational coefficients and monodromy group \(PSL_6(2)\) ramified over at least four points. This is achieved due to the explicit computation of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this family, followed by a search for rational points on it. As a byproduct of our calculations we obtain the first explicit \(Aut(PSL_6(2))\)-realizations over \(\mathbb{Q}(t)\). At last, we present a technique by Elkies for bounding the transitivity degree of Galois groups. This provides an alternative way to verify the Galois groups from the previous chapters and also yields a proof that the monodromy group of a degree-276 cover computed by Monien is isomorphic to the sporadic 2-transitive Conway group \(Co_3\).}, subject = {Galois-Theorie}, language = {en} } @article{KakaroumpasSoleriGibert2022, author = {Kakaroumpas, Spyridon and Soler i Gibert, Od{\´i}}, title = {Dyadic product BMO in the Bloom setting}, series = {Journal of the London Mathematical Society}, volume = {106}, journal = {Journal of the London Mathematical Society}, number = {2}, issn = {0024-6107}, doi = {10.1112/jlms.12588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318602}, pages = {899 -- 935}, year = {2022}, abstract = {{\´O}. Blasco and S. Pott showed that the supremum of operator norms over L\(^{2}\) of all bicommutators (with the same symbol) of one-parameter Haar multipliers dominates the biparameter dyadic product BMO norm of the symbol itself. In the present work we extend this result to the Bloom setting, and to any exponent 1 < p < ∞. The main tool is a new characterization in terms of paraproducts and two-weight John-Nirenberg inequalities for dyadic product BMO in the Bloom setting. We also extend our results to the whole scale of indexed spaces between little bmo and product BMO in the general multiparameter setting, with the appropriate iterated commutator in each case.}, language = {en} } @phdthesis{Lechner2022, author = {Lechner, Theresa}, title = {Proximal Methods for Nonconvex Composite Optimization Problems}, doi = {10.25972/OPUS-28907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289073}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Optimization problems with composite functions deal with the minimization of the sum of a smooth function and a convex nonsmooth function. In this thesis several numerical methods for solving such problems in finite-dimensional spaces are discussed, which are based on proximity operators. After some basic results from convex and nonsmooth analysis are summarized, a first-order method, the proximal gradient method, is presented and its convergence properties are discussed in detail. Known results from the literature are summarized and supplemented by additional ones. Subsequently, the main part of the thesis is the derivation of two methods which, in addition, make use of second-order information and are based on proximal Newton and proximal quasi-Newton methods, respectively. The difference between the two methods is that the first one uses a classical line search, while the second one uses a regularization parameter instead. Both techniques lead to the advantage that, in contrast to many similar methods, in the respective detailed convergence analysis global convergence to stationary points can be proved without any restricting precondition. Furthermore, comprehensive results show the local convergence properties as well as convergence rates of these algorithms, which are based on rather weak assumptions. Also a method for the solution of the arising proximal subproblems is investigated. In addition, the thesis contains an extensive collection of application examples and a detailed discussion of the related numerical results.}, subject = {Optimierung}, language = {en} } @article{DashkovskiySlynko2022, author = {Dashkovskiy, Sergey and Slynko, Vitalii}, title = {Stability conditions for impulsive dynamical systems}, series = {Mathematics of Control, Signals, and Systems}, volume = {34}, journal = {Mathematics of Control, Signals, and Systems}, number = {1}, issn = {1435-568X}, doi = {10.1007/s00498-021-00305-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268390}, pages = {95-128}, year = {2022}, abstract = {In this work, we consider impulsive dynamical systems evolving on an infinite-dimensional space and subjected to external perturbations. We look for stability conditions that guarantee the input-to-state stability for such systems. Our new dwell-time conditions allow the situation, where both continuous and discrete dynamics can be unstable simultaneously. Lyapunov like methods are developed for this purpose. Illustrative finite and infinite dimensional examples are provided to demonstrate the application of the main results. These examples cannot be treated by any other published approach and demonstrate the effectiveness of our results.}, language = {en} } @phdthesis{Stumpf2022, author = {Stumpf, Pascal}, title = {On coverings and reduced residues in combinatorial number theory}, doi = {10.25972/OPUS-29350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293504}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Our starting point is the Jacobsthal function \(j(m)\), defined for each positive integer \(m\) as the smallest number such that every \(j(m)\) consecutive integers contain at least one integer relatively prime to \(m\). It has turned out that improving on upper bounds for \(j(m)\) would also lead to advances in understanding the distribution of prime numbers among arithmetic progressions. If \(P_r\) denotes the product of the first \(r\) prime numbers, then a conjecture of Montgomery states that \(j(P_r)\) can be bounded from above by \(r (\log r)^2\) up to some constant factor. However, the until now very promising sieve methods seem to have reached a limit here, and the main goal of this work is to develop other combinatorial methods in hope of coming a bit closer to prove the conjecture of Montgomery. Alongside, we solve a problem of Recam{\´a}n about the maximum possible length among arithmetic progressions in the least (positive) reduced residue system modulo \(m\). Lastly, we turn towards three additive representation functions as introduced by Erdős, S{\´a}rk{\"o}zy and S{\´o}s who studied their surprising different monotonicity behavior. By an alternative approach, we answer a question of S{\´a}rk{\"o}zy and demostrate that another conjecture does not hold.}, subject = {Kombinatorische Zahlentheorie}, language = {en} } @phdthesis{Kortum2022, author = {Kortum, Joshua}, title = {Global Existence and Uniqueness Results for Nematic Liquid Crystal and Magnetoviscoelastic Flows}, doi = {10.25972/OPUS-27827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278271}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Liquid crystals and polymeric fluids are found in many technical applications with liquid crystal displays probably being the most prominent one. Ferromagnetic materials are well established in industrial and everyday use, e.g. as magnets in generators, transformers and hard drive disks. Among ferromagnetic materials, we find a subclass which undergoes deformations if an external magnetic field is applied. This effect is exploited in actuators, magnetoelastic sensors, and new fluid materials have been produced which retain their induced magnetization during the flow. A central issue consists of a proper modelling for those materials. Several models exist regarding liquid crystals and liquid crystal flows, but up to now, none of them has provided a full insight into all observed effects. On materials encompassing magnetic, elastic and perhaps even fluid dynamic effects, the mathematical literature seems sparse in terms of models. To some extent, one can unify the modeling of nematic liquid crystals and magnetoviscoelastic materials employing a so-called energetic variational approach. Using the least action principle from theoretical physics, the actual task reduces to finding appropriate energies describing the observed behavior. The procedure leads to systems of evolutionary partial differential equations, which are analyzed in this work. From the mathematical point of view, fundamental questions on existence, uniqueness and stability of solutions remain unsolved. Concerning the Ericksen-Leslie system modelling nematic liquid crystal flows, an approximation to this model is given by the so-called Ginzburg-Landau approximation. Solutions to the latter are intended to approximately represent solutions to the Ericksen-Leslie system. Indeed, we verify this presumption in two spatial dimensions. More precisely, it is shown that weak solutions of the Ginzburg-Landau approximation converge to solutions of the Ericksen-Leslie system in the energy space for all positive times of evolution. In order to do so, theory for the Euler equations invented by DiPerna and Majda on weak compactness and concentration measures is used. The second part of the work deals with a system of partial differential equations modelling magnetoviscoelastic fluids. We provide a well-posedness result in two spatial dimensions for large energies and large times. Along the verification of that conclusion, existing theory on the Ericksen-Leslie system and the harmonic map flow is deployed and suitably extended.}, subject = {Magnetoelastizit{\"a}t}, language = {en} } @article{HelinKretschmann2022, author = {Helin, Tapio and Kretschmann, Remo}, title = {Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems}, series = {Numerische Mathematik}, volume = {150}, journal = {Numerische Mathematik}, number = {2}, doi = {10.1007/s00211-021-01266-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265399}, pages = {521-549}, year = {2022}, abstract = {In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915-971, 2020. https://doi.org/10.1007/s00211-020-01131-1), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.}, language = {en} } @techreport{GerberQuarder2022, author = {Gerber, Sebastian and Quarder, Jascha}, title = {Erfassung von Aspekten professioneller Kompetenz zum Lehren des Simulierens und mathematischen Modellierens mit digitalen Werkzeugen. Ein Testinstrument}, doi = {10.25972/OPUS-27359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273597}, pages = {42}, year = {2022}, abstract = {Die Auseinandersetzung mit Simulations- und Modellierungsaufgaben, die mit digitalen Werkzeugen zu bearbeiten sind, stellt ver{\"a}nderte Anforderungen an Mathematiklehrkr{\"a}fte in der Unterrichtsplanung und -durchf{\"u}hrung. Werden digitale Werkzeuge sinnvoll eingesetzt, so unterst{\"u}tzen sie Simulations- und Modellierungsprozesse und erm{\"o}glichen realit{\"a}tsn{\"a}here Sachkontexte im Mathematikunterricht. F{\"u}r die empirische Untersuchung professioneller Kompetenzen zum Lehren des Simulierens und mathematischen Modellierens mit digitalen Werkzeugen ist es notwendig, Aspekte globaler Lehrkompetenzen von (angehenden) Mathematiklehrkr{\"a}ften bereichsspezifisch auszudeuten. Daher haben wir ein Testinstrument entwickelt, das die {\"U}berzeugungen, die Selbstwirksamkeitserwartungen und das fachdidaktische Wissen zum Lehren des Simulierens und mathematischen Modellierens mit digitalen Werkzeugen erfasst. Erg{\"a}nzt wird das Testinstrument durch selbstberichtete Vorerfahrungen zum eigenen Gebrauch digitaler Werkzeuge sowie zur Verwendung digitaler Werkzeuge in Unterrichtsplanung und -durchf{\"u}hrung. Das Testinstrument ist geeignet, um mittels Analysen von Veranstaltungsgruppen im Pr{\"a}-Post-Design den Zuwachs der oben beschriebenen Kompetenz von (angehenden) Mathematiklehrkr{\"a}ften zu messen. Somit k{\"o}nnen in Zukunft anhand der Ergebnisse die Wirksamkeit von Lehrveranstaltungen, die diese Kompetenz f{\"o}rdern (sollen), untersucht und evaluiert werden. Der Beitrag gliedert sich in zwei Teile: Zun{\"a}chst werden in der Testbeschreibung das zugrundeliegende Konstrukt und der Anwendungsbereich des Testinstruments sowie dessen Aufbau und Hinweise zur Durchf{\"u}hrung beschrieben. Zudem wird die Testg{\"u}te anhand der Pilotierungsergebnisse {\"u}berpr{\"u}ft. Im zweiten Teil befindet sich das vollst{\"a}ndige Testinstrument.}, subject = {GeoGebra}, language = {de} } @phdthesis{Schmeller2022, author = {Schmeller, Christof}, title = {Uniform distribution of zero ordinates of Epstein zeta-functions}, doi = {10.25972/OPUS-25199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The dissertation investigates the wide class of Epstein zeta-functions in terms of uniform distribution modulo one of the ordinates of their nontrivial zeros. Main results are a proof of a Landau type theorem for all Epstein zeta-functions as well as uniform distribution modulo one for the zero ordinates of all Epstein zeta-functions asscoiated with binary quadratic forms.}, subject = {Zetafunktion}, language = {en} } @article{HellmuthKlingenberg2022, author = {Hellmuth, Kathrin and Klingenberg, Christian}, title = {Computing Black Scholes with uncertain volatility — a machine learning approach}, series = {Mathematics}, volume = {10}, journal = {Mathematics}, number = {3}, issn = {2227-7390}, doi = {10.3390/math10030489}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262280}, year = {2022}, abstract = {In financial mathematics, it is a typical approach to approximate financial markets operating in discrete time by continuous-time models such as the Black Scholes model. Fitting this model gives rise to difficulties due to the discrete nature of market data. We thus model the pricing process of financial derivatives by the Black Scholes equation, where the volatility is a function of a finite number of random variables. This reflects an influence of uncertain factors when determining volatility. The aim is to quantify the effect of this uncertainty when computing the price of derivatives. Our underlying method is the generalized Polynomial Chaos (gPC) method in order to numerically compute the uncertainty of the solution by the stochastic Galerkin approach and a finite difference method. We present an efficient numerical variation of this method, which is based on a machine learning technique, the so-called Bi-Fidelity approach. This is illustrated with numerical examples.}, language = {en} } @phdthesis{Mungenast2022, author = {Mungenast, Sebastian}, title = {Zur Bedeutung von Metakognition beim Umgang mit Mathematik - Dokumentation metakognitiver Aktivit{\"a}ten bei Studienanf{\"a}nger_innen, Entwicklung eines Kategoriensystems f{\"u}r Metakognition beim Umgang mit Mathematik und Er{\"o}rterung von Ansatzpunkten f{\"u}r Metakognition in der Analysis}, doi = {10.25972/OPUS-29311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich explorativ mit Metakognition beim Umgang mit Mathematik. Aufbauend auf der vorgestellten Forschungsliteratur wird der Einsatz von Metakognition im Rahmen einer qualitativen Studie bei Studienanf{\"a}nger_innen aus verschiedenen Mathematik-(Lehramts-)Studieng{\"a}ngen dokumentiert. Unter Verwendung der Qualitativen Inhaltsanalyse nach Mayring erfolgt die Etablierung eines Kategoriensystems f{\"u}r den Begriff Metakognition im Hinblick auf den Einsatz in der Mathematik, das bisherige Systematisierungen erweitert. Schließlich wird der Einsatz der entsprechenden metakognitiven Aspekte am Beispiel verschiedener Begriffe und Verfahren aus dem Analysis-Unterricht exemplarisch aufgezeigt.}, subject = {Metakognition}, language = {de} } @phdthesis{Nedrenco2022, author = {Nedrenco, Dmitri}, title = {Axiomatisieren lernen mit Papierfalten : Entwicklung, Durchf{\"u}hrung und Auswertung eines Hochschulkurses f{\"u}r gymnasiale Lehramtsstudierende}, doi = {10.25972/OPUS-27938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In dieser Arbeit wird mathematisches Papierfalten und speziell 1-fach-Origami im universitären Kontext untersucht. Die Arbeit besteht aus drei Teilen. Der erste Teil ist im Wesentlichen der Sachanalyse des 1-fach-Origami gewidmet. Im ersten Kapitel gehen wir auf die geschichtliche Einordnung des 1-fach-Origami, betrachten axiomatische Grundlagen und diskutieren, wie das Axiomatisieren von 1-fach-Origami zum Verständnis des Axiomenbegriffs beitragen könnte. Im zweiten Kapitel schildern wir das Design der zugehörigen explorativen Studie, beschreiben unsere Forschungsziele und -fragen. Im dritten Kapitel wird 1-fach-Origami mathematisiert, definiert und eingehend untersucht. Der zweite Teil beschäftigt sich mit den von uns gestalteten und durchgef{\"u}hrten Kursen »Axiomatisieren lernen mit Papierfalten«. Im vierten Kapitel beschreiben wir die Lehrmethodik und die Gestaltung der Kurse, das f{\"u}nfte Kapitel enthält ein Exzerpt der Kurse. Im dritten Teil werden die zugehörigen Tests beschrieben. Im sechsten Kapitel erläutern wir das Design der Tests sowie die Testmethodik. Im siebten Kapitel findet die Auswertung ebendieser Tests statt.}, subject = {Mathematikunterricht}, language = {de} } @article{FallMinlendRatzkin2022, author = {Fall, Mouhammed Moustapha and Minlend, Ignace Aristide and Ratzkin, Jesse}, title = {Foliation of an Asymptotically Flat End by Critical Capacitors}, series = {The Journal of Geometric Analysis}, volume = {32}, journal = {The Journal of Geometric Analysis}, number = {2}, issn = {1559-002X}, doi = {10.1007/s12220-021-00746-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269997}, year = {2022}, abstract = {We construct a foliation of an asymptotically flat end of a Riemannian manifold by hypersurfaces which are critical points of a natural functional arising in potential theory. These hypersurfaces are perturbations of large coordinate spheres, and they admit solutions of a certain over-determined boundary value problem involving the Laplace-Beltrami operator. In a key step we must invert the Dirichlet-to-Neumann operator, highlighting the nonlocal nature of our problem.}, language = {en} } @article{EastonvanDalenGoebetal.2022, author = {Easton, Andrew and van Dalen, Okki and Goeb, Rainer and Di Bucchianico, Alessandro}, title = {Bivariate copula monitoring}, series = {Quality and Reliability Engineering International}, volume = {38}, journal = {Quality and Reliability Engineering International}, number = {3}, doi = {10.1002/qre.3034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276501}, pages = {1272 -- 1288}, year = {2022}, abstract = {The assumption of multivariate normality underlying the Hotelling T\(^{2}\) chart is often violated for process data. The multivariate dependency structure can be separated from marginals with the help of copula theory, which permits to model association structures beyond the covariance matrix. Copula-based estimation and testing routines have reached maturity regarding a variety of practical applications. We have constructed a rich design matrix for the comparison of the Hotelling T\(^{2}\) chart with the copula test by Verdier and the copula test by Vuong, which allows for weighting the observations adaptively. Based on the design matrix, we have conducted a large and computationally intensive simulation study. The results show that the copula test by Verdier performs better than Hotelling T\(^{2}\) in a large variety of out-of-control cases, whereas the weighted Vuong scheme often fails to provide an improvement.}, language = {en} } @article{CampanaBorzi2022, author = {Campana, Francesca Cal{\`a} and Borz{\`i}, Alfio}, title = {On the SQH Method for Solving Differential Nash Games}, series = {Journal of Dynamical and Control Systems}, volume = {28}, journal = {Journal of Dynamical and Control Systems}, issn = {1573-8698}, doi = {10.1007/s10883-021-09546-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269111}, pages = {739-755}, year = {2022}, abstract = {A sequentialquadratic Hamiltonian schemefor solving open-loop differential Nash games is proposed and investigated. This method is formulated in the framework of the Pontryagin maximum principle and represents an efficient and robust extension of the successive approximations strategy for solving optimal control problems. Theoretical results are presented that prove the well-posedness of the proposed scheme, and results of numerical experiments are reported that successfully validate its computational performance.}, language = {en} } @article{KrausMouchaRoth2022, author = {Kraus, Daniela and Moucha, Annika and Roth, Oliver}, title = {A sharp Bernstein-type inequality and application to the Carleson embedding theorem with matrix weights}, series = {Analysis and Mathematical Physics}, volume = {12}, journal = {Analysis and Mathematical Physics}, number = {1}, issn = {1664-235X}, doi = {10.1007/s13324-021-00639-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270485}, year = {2022}, abstract = {We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301-3312, 2019) on the weighted martingale Carleson embedding theorem with matrix weights. In the scalar case this new upper bound is optimal.}, language = {en} } @article{JustSiller2022, author = {Just, Janina and Siller, Hans-Stefan}, title = {The role of mathematics in STEM secondary classrooms: a systematic literature review}, series = {Education Sciences}, volume = {12}, journal = {Education Sciences}, number = {9}, issn = {2227-7102}, doi = {10.3390/educsci12090629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288075}, year = {2022}, abstract = {Nowadays, science, technology, engineering, and mathematics (STEM) play a critical role in a nation's global competitiveness and prosperity. Thus, there is a need to educate students in these subjects to meet the current and future demands of personal life and society. While applications, especially in science, engineering, and technology, are directly obvious, mathematics underpins the other STEM disciplines. It is recognized that mathematics is the foundation for all other STEM disciplines; the role of mathematics in classrooms is not clear yet. Therefore, the question arises: What is the current role of mathematics in secondary STEM classrooms? To answer this question, we conducted a systematic literature review based on three publication databases (Web of Science, ERIC, and EBSCO Teacher Referral Center). This literature review paper is intended to contribute to the current state of the role of mathematics in STEM education in secondary classrooms. Through the search, starting with 1910 documents, only 14 eligible documents were found. In these, mathematics is often seen as a minor matter and a means to an end in the eyes of science educators. From this, we conclude that the role of mathematics in the STEM classroom should be further strengthened. Overall, the paper highlights a major research gap, and proposes possible initial solutions to close it.}, language = {en} } @article{AppellBritoReinwand2022, author = {Appell, J{\"u}rgen and Brito, Bel{\´e}n L{\´o}pez and Reinwand, Simon}, title = {Counterexamples on compositions}, series = {Mathematische Semesterberichte}, volume = {70}, journal = {Mathematische Semesterberichte}, number = {1}, issn = {0720-728X}, doi = {10.1007/s00591-022-00318-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324306}, pages = {43-56}, year = {2022}, abstract = {We give a collection of 16 examples which show that compositions \(g\) \(\circ\) \(f\) of well-behaved functions \(f\) and \(g\) can be badly behaved. Remarkably, in 10 of the 16 examples it suffices to take as outer function \(g\) simply a power-type or characteristic function. Such a collection of examples may serve as a source of exercises for a calculus course.}, language = {en} } @misc{Kanzow2022, author = {Kanzow, Christian}, title = {Y. Cui, J.-S. Pang: "Modern Nonconvex Nondifferentiable Optimization"}, series = {Jahresbericht der Deutschen Mathematiker-Vereinigung}, volume = {124}, journal = {Jahresbericht der Deutschen Mathematiker-Vereinigung}, number = {2}, issn = {0012-0456}, doi = {10.1365/s13291-022-00250-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324346}, pages = {137-143}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{KanzowMehlitz2022, author = {Kanzow, Christian and Mehlitz, Patrick}, title = {Convergence properties of monotone and nonmonotone proximal gradient methods revisited}, series = {Journal of Optimization Theory and Applications}, volume = {195}, journal = {Journal of Optimization Theory and Applications}, number = {2}, issn = {0022-3239}, doi = {10.1007/s10957-022-02101-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324351}, pages = {624-646}, year = {2022}, abstract = {Composite optimization problems, where the sum of a smooth and a merely lower semicontinuous function has to be minimized, are often tackled numerically by means of proximal gradient methods as soon as the lower semicontinuous part of the objective function is of simple enough structure. The available convergence theory associated with these methods (mostly) requires the derivative of the smooth part of the objective function to be (globally) Lipschitz continuous, and this might be a restrictive assumption in some practically relevant scenarios. In this paper, we readdress this classical topic and provide convergence results for the classical (monotone) proximal gradient method and one of its nonmonotone extensions which are applicable in the absence of (strong) Lipschitz assumptions. This is possible since, for the price of forgoing convergence rates, we omit the use of descent-type lemmas in our analysis.}, language = {en} } @article{KourouZarvalis2022, author = {Kourou, Maria and Zarvalis, Konstantinos}, title = {Compact sets in petals and their backward orbits under semigroups of holomorphic functions}, series = {Potential Analysis}, volume = {59}, journal = {Potential Analysis}, number = {4}, issn = {0926-2601}, doi = {10.1007/s11118-022-10036-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324368}, pages = {1913-1939}, year = {2022}, abstract = {Let (ϕ\(_t\))\(_{t≥0}\) be a semigroup of holomorphic functions in the unit disk \(\mathbb {D}\) and K a compact subset of \(\mathbb {D}\). We investigate the conditions under which the backward orbit of K under the semigroup exists. Subsequently, the geometric characteristics, as well as, potential theoretic quantities for the backward orbit of K are examined. More specifically, results are obtained concerning the asymptotic behavior of its hyperbolic area and diameter, the harmonic measure and the capacity of the condenser that K forms with the unit disk.}, language = {en} } @article{DippellEspositoWaldmann2022, author = {Dippell, Marvin and Esposito, Chiara and Waldmann, Stefan}, title = {Deformation and Hochschild cohomology of coisotropic algebras}, series = {Annali di Matematica Pura ed Applicata}, volume = {201}, journal = {Annali di Matematica Pura ed Applicata}, number = {3}, doi = {10.1007/s10231-021-01158-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329069}, pages = {1295-1323}, year = {2022}, abstract = {Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper, we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.}, language = {en} } @article{GreefrathSillerKlocketal.2022, author = {Greefrath, Gilbert and Siller, Hans-Stefan and Klock, Heiner and Wess, Raphael}, title = {Pre-service secondary teachers' pedagogical content knowledge for the teaching of mathematical modelling}, series = {Educational Studies in Mathematics}, volume = {109}, journal = {Educational Studies in Mathematics}, number = {2}, issn = {0013-1954}, doi = {10.1007/s10649-021-10038-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308259}, pages = {383-407}, year = {2022}, abstract = {The article deals with the pedagogical content knowledge of mathematical modelling as part of the professional competence of pre-service teachers. With the help of a test developed for this purpose from a conceptual model, we examine whether this pedagogical content knowledge can be promoted in its different facets—especially knowledge about modelling tasks and about interventions—by suitable university seminars. For this purpose, the test was administered to three groups in a seminar for the teaching of mathematical modelling: (1) to those respondents who created their own modelling tasks for use with students, (2) to those trained to intervene in mathematical modelling processes, and (3) participating students who are not required to address mathematical modelling. The findings of the study—based on variance analysis—indicate that certain facets (knowledge of modelling tasks, modelling processes, and interventions) have increased significantly in both experimental groups but to varying degrees. By contrast, pre-service teachers in the control group demonstrated no significant change to their level of pedagogical content knowledge.}, language = {en} } @phdthesis{Reinwand2021, author = {Reinwand, Simon}, title = {Functions of Bounded Variation: Theory, Methods, Applications}, publisher = {Cuvillier-Verlag, G{\"o}ttingen}, isbn = {9783736974036}, doi = {10.25972/OPUS-23515}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235153}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {326}, year = {2021}, abstract = {Functions of bounded variation are most important in many fields of mathematics. This thesis investigates spaces of functions of bounded variation with one variable of various types, compares them to other classical function spaces and reveals natural "habitats" of BV-functions. New and almost comprehensive results concerning mapping properties like surjectivity and injectivity, several kinds of continuity and compactness of both linear and nonlinear operators between such spaces are given. A new theory about different types of convergence of sequences of such operators is presented in full detail and applied to a new proof for the continuity of the composition operator in the classical BV-space. The abstract results serve as ingredients to solve Hammerstein and Volterra integral equations using fixed point theory. Many criteria guaranteeing the existence and uniqueness of solutions in BV-type spaces are given and later applied to solve boundary and initial value problems in a nonclassical setting. A big emphasis is put on a clear and detailed discussion. Many pictures and synoptic tables help to visualize and summarize the most important ideas. Over 160 examples and counterexamples illustrate the many abstract results and how delicate some of them are.}, subject = {Funktion von beschr{\"a}nkter Variation}, language = {en} } @phdthesis{Wenz2021, author = {Wenz, Andreas}, title = {Computation of Belyi maps with prescribed ramification and applications in Galois theory}, doi = {10.25972/OPUS-24083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {We compute genus-0 Belyi maps with prescribed monodromy and strictly verify the computed results. Among the computed examples are almost simple primitive groups that satisfy the rational rigidity criterion yielding polynomials with prescribed Galois groups over Q(t). We also give an explicit version of a theorem of Magaard, which lists all sporadic groups occurring as composition factors of monodromy groups of rational functions.}, subject = {Galois-Theorie}, language = {en} } @article{KanzowRaharjaSchwartz2021, author = {Kanzow, Christian and Raharja, Andreas B. and Schwartz, Alexandra}, title = {An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems}, series = {Journal of Optimization Theory and Applications}, volume = {189}, journal = {Journal of Optimization Theory and Applications}, number = {3}, issn = {1573-2878}, doi = {10.1007/s10957-021-01854-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269166}, pages = {793-813}, year = {2021}, abstract = {A reformulation of cardinality-constrained optimization problems into continuous nonlinear optimization problems with an orthogonality-type constraint has gained some popularity during the last few years. Due to the special structure of the constraints, the reformulation violates many standard assumptions and therefore is often solved using specialized algorithms. In contrast to this, we investigate the viability of using a standard safeguarded multiplier penalty method without any problem-tailored modifications to solve the reformulated problem. We prove global convergence towards an (essentially strongly) stationary point under a suitable problem-tailored quasinormality constraint qualification. Numerical experiments illustrating the performance of the method in comparison to regularization-based approaches are provided.}, language = {en} } @article{HellmuthKlingenbergLietal.2021, author = {Hellmuth, Kathrin and Klingenberg, Christian and Li, Qin and Tang, Min}, title = {Multiscale convergence of the inverse problem for chemotaxis in the Bayesian setting}, series = {Computation}, volume = {9}, journal = {Computation}, number = {11}, issn = {2079-3197}, doi = {10.3390/computation9110119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250216}, year = {2021}, abstract = {Chemotaxis describes the movement of an organism, such as single or multi-cellular organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe the phenomenon are the celebrated Keller-Segel equation and a chemotaxis kinetic equation. These two equations describe the organism's movement at the macro- and mesoscopic level, respectively, and are asymptotically equivalent in the parabolic regime. The way in which the organism responds to a chemical stimulus is embedded in the diffusion/advection coefficients of the Keller-Segel equation or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the time dynamics of the organisms' population level movement when reacting to certain stimulation. From this, one infers the chemotaxis response, which constitutes an inverse problem. In this paper, we discuss the relation between both the macro- and mesoscopic inverse problems, each of which is associated with two different forward models. The discussion is presented in the Bayesian framework, where the posterior distribution of the turning kernel of the organism population is sought. We prove the asymptotic equivalence of the two posterior distributions.}, language = {en} } @article{TongsompornWananiyakulSteuding2021, author = {Tongsomporn, Janyarak and Wananiyakul, Saeree and Steuding, J{\"o}rn}, title = {The values of the periodic zeta-function at the nontrivial zeros of Riemann's zeta-function}, series = {Symmetry}, volume = {13}, journal = {Symmetry}, number = {12}, issn = {2073-8994}, doi = {10.3390/sym13122410}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252261}, year = {2021}, abstract = {In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa's approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.}, language = {en} } @article{GreefrathOldenburgSilleretal.2021, author = {Greefrath, Gilbert and Oldenburg, Reinhard and Siller, Hans-Stefan and Ulm, Volker and Weigand, Hans-Georg}, title = {Basic Mental Models of Integrals - Theoretical Conception, Development of a Test Instrument, and first Results}, series = {ZDM - Mathematics Education}, volume = {53}, journal = {ZDM - Mathematics Education}, issn = {1863-9690}, doi = {10.1007/s11858-020-01207-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232830}, pages = {649-661}, year = {2021}, abstract = {A basic mental model (BMM—in German 'Grundvorstellung') of a mathematical concept is a content-related interpretation that gives meaning to this concept. This paper defines normative and individual BMMs and concretizes them using the integral as an example. Four BMMs are developed about the concept of definite integral, sometimes used in specific teaching approaches: the BMMs of area, reconstruction, average, and accumulation. Based on theoretical work, in this paper we ask how these BMMs could be identified empirically. A test instrument was developed, piloted, validated and applied with 428 students in first-year mathematics courses. The test results show that the four normative BMMs of the integral can be detected and separated empirically. Moreover, the results allow a comparison of the existing individual BMMs and the requested normative BMMs. Consequences for future developments are discussed.}, language = {en} } @article{HaackHauckKlingenbergetal.2021, author = {Haack, J. and Hauck, C. and Klingenberg, C. and Pirner, M. and Warnecke, S.}, title = {A Consistent BGK Model with Velocity-Dependent Collision Frequency for Gas Mixtures}, series = {Journal of Statistical Physics}, volume = {184}, journal = {Journal of Statistical Physics}, number = {3}, issn = {1572-9613}, doi = {10.1007/s10955-021-02821-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269146}, pages = {31}, year = {2021}, abstract = {We derive a multi-species BGK model with velocity-dependent collision frequency for a non-reactive, multi-component gas mixture. The model is derived by minimizing a weighted entropy under the constraint that the number of particles of each species, total momentum, and total energy are conserved. We prove that this minimization problem admits a unique solution for very general collision frequencies. Moreover, we prove that the model satisfies an H-Theorem and characterize the form of equilibrium.}, language = {en} } @article{KanzowRaharjaSchwartz2021, author = {Kanzow, Christian and Raharja, Andreas B. and Schwartz, Alexandra}, title = {Sequential optimality conditions for cardinality-constrained optimization problems with applications}, series = {Computational Optimization and Applications}, volume = {80}, journal = {Computational Optimization and Applications}, number = {1}, issn = {1573-2894}, doi = {10.1007/s10589-021-00298-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269052}, pages = {185-211}, year = {2021}, abstract = {Recently, a new approach to tackle cardinality-constrained optimization problems based on a continuous reformulation of the problem was proposed. Following this approach, we derive a problem-tailored sequential optimality condition, which is satisfied at every local minimizer without requiring any constraint qualification. We relate this condition to an existing M-type stationary concept by introducing a weak sequential constraint qualification based on a cone-continuity property. Finally, we present two algorithmic applications: We improve existing results for a known regularization method by proving that it generates limit points satisfying the aforementioned optimality conditions even if the subproblems are only solved inexactly. And we show that, under a suitable Kurdyka-Łojasiewicz-type assumption, any limit point of a standard (safeguarded) multiplier penalty method applied directly to the reformulated problem also satisfies the optimality condition. These results are stronger than corresponding ones known for the related class of mathematical programs with complementarity constraints.}, language = {en} } @phdthesis{Berberich2021, author = {Berberich, Jonas Philipp}, title = {Fluids in Gravitational Fields - Well-Balanced Modifications for Astrophysical Finite-Volume Codes}, doi = {10.25972/OPUS-21967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Stellar structure can -- in good approximation -- be described as a hydrostatic state, which which arises due to a balance between gravitational force and pressure gradient. Hydrostatic states are static solutions of the full compressible Euler system with gravitational source term, which can be used to model the stellar interior. In order to carry out simulations of dynamical processes occurring in stars, it is vital for the numerical method to accurately maintain the hydrostatic state over a long time period. In this thesis we present different methods to modify astrophysical finite volume codes in order to make them \emph{well-balanced}, preventing them from introducing significant discretization errors close to hydrostatic states. Our well-balanced modifications are constructed so that they can meet the requirements for methods applied in the astrophysical context: They can well-balance arbitrary hydrostatic states with any equation of state that is applied to model thermodynamical relations and they are simple to implement in existing astrophysical finite volume codes. One of our well-balanced modifications follows given solutions exactly and can be applied on any grid geometry. The other methods we introduce, which do no require any a priori knowledge, balance local high order approximations of arbitrary hydrostatic states on a Cartesian grid. All of our modifications allow for high order accuracy of the method. The improved accuracy close to hydrostatic states is verified in various numerical experiments.}, subject = {Fluid}, language = {en} } @phdthesis{Moenius2021, author = {M{\"o}nius, Katja}, title = {Algebraic and Arithmetic Properties of Graph Spectra}, doi = {10.25972/OPUS-23085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974. We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree. Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs. Besides that, we study spectra of zero-divisor graphs over finite commutative rings. Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring.}, subject = {Algebraische Zahlentheorie}, language = {en} } @phdthesis{Herrmann2021, author = {Herrmann, Marc}, title = {The Total Variation on Surfaces and of Surfaces}, doi = {10.25972/OPUS-24073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis is concerned with applying the total variation (TV) regularizer to surfaces and different types of shape optimization problems. The resulting problems are challenging since they suffer from the non-differentiability of the TV-seminorm, but unlike most other priors it favors piecewise constant solutions, which results in piecewise flat geometries for shape optimization problems.The first part of this thesis deals with an analogue of the TV image reconstruction approach [Rudin, Osher, Fatemi (Physica D, 1992)] for images on smooth surfaces. A rigorous analytical framework is developed for this model and its Fenchel predual, which is a quadratic optimization problem with pointwise inequality constraints on the surface. A function space interior point method is proposed to solve it. Afterwards, a discrete variant (DTV) based on a nodal quadrature formula is defined for piecewise polynomial, globally discontinuous and continuous finite element functions on triangulated surface meshes. DTV has favorable properties, which include a convenient dual representation. Next, an analogue of the total variation prior for the normal vector field along the boundary of smooth shapes in 3D is introduced. Its analysis is based on a differential geometric setting in which the unit normal vector is viewed as an element of the two-dimensional sphere manifold. Shape calculus is used to characterize the relevant derivatives and an variant of the split Bregman method for manifold valued functions is proposed. This is followed by an extension of the total variation prior for the normal vector field for piecewise flat surfaces and the previous variant of split Bregman method is adapted. Numerical experiments confirm that the new prior favours polyhedral shapes.}, subject = {Gestaltoptimierung}, language = {en} } @phdthesis{Bartsch2021, author = {Bartsch, Jan}, title = {Theoretical and numerical investigation of optimal control problems governed by kinetic models}, doi = {10.25972/OPUS-24906}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249066}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis is devoted to the numerical and theoretical analysis of ensemble optimal control problems governed by kinetic models. The formulation and study of these problems have been put forward in recent years by R.W. Brockett with the motivation that ensemble control may provide a more general and robust control framework for dynamical systems. Following this formulation, a Liouville (or continuity) equation with an unbounded drift function is considered together with a class of cost functionals that include tracking of ensembles of trajectories of dynamical systems and different control costs. Specifically, \$L^2\$, \$H^1\$ and \$L^1\$ control costs are taken into account which leads to non--smooth optimization problems. For the theoretical investigation of the resulting optimal control problems, a well--posedness theory in weighted Sobolev spaces is presented for Liouville and related transport equations. Specifically, existence and uniqueness results for these equations and energy estimates in suitable norms are provided; in particular norms in weighted Sobolev spaces. Then, non--smooth optimal control problems governed by the Liouville equation are formulated with a control mechanism in the drift function. Further, box--constraints on the control are imposed. The control--to--state map is introduced, that associates to any control the unique solution of the corresponding Liouville equation. Important properties of this map are investigated, specifically, that it is well--defined, continuous and Frechet differentiable. Using the first two properties, the existence of solutions to the optimal control problems is shown. While proving the differentiability, a loss of regularity is encountered, that is natural to hyperbolic equations. This leads to the need of the investigation of the control--to--state map in the topology of weighted Sobolev spaces. Exploiting the Frechet differentiability, it is possible to characterize solutions to the optimal control problem as solutions to an optimality system. This system consists of the Liouville equation, its optimization adjoint in the form of a transport equation, and a gradient inequality. Numerical methodologies for solving Liouville and transport equations are presented that are based on a non--smooth Lagrange optimization framework. For this purpose, approximation and solution schemes for such equations are developed and analyzed. For the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov--Tadmor method, a Runge--Kutta scheme, and a Strang splitting method are discussed. Stability and second--order accuracy of these resulting schemes are proven in the discrete \$L^1\$ norm. In addition, conservation of mass and positivity preservation are confirmed for the solution method of the Liouville model. As numerical optimization strategy, an adapted Krylow--Newton method is applied. Since the control is considered to be an element of \$H^1\$ and to obey certain box--constraints, a method for calculating a \$H^1\$ projection is presented. Since the optimal control problem is non-smooth, a semi-smooth adaption of Newton's method is taken into account. Results of numerical experiments are presented that successfully validate the proposed deterministic framework. After the discussion of deterministic schemes, the linear space--homogeneous Keilson--Storer master equation is investigated. This equation was originally developed for the modelling of Brownian motion of particles immersed in a fluid and is a representative model of the class of linear Boltzmann equations. The well--posedness of the Keilson--Storer master equation is investigated and energy estimates in different topologies are derived. To solve this equation numerically, Monte Carlo methods are considered. Such methods take advantage of the kinetic formulation of the Liouville equation and directly implement the behaviour of the system of particles under consideration. This includes the probabilistic behaviour of the collisions between particles. Optimal control problems are formulated with an objective that is constituted of certain expected values in velocity space and the \$L^2\$ and \$H^1\$ costs of the control. The problems are governed by the Keilson--Storer master equation and the control mechanism is considered to be within the collision kernel. The objective of the optimal control of this model is to drive an ensemble of particles to acquire a desired mean velocity and to achieve a desired final velocity configuration. Existence of solutions of the optimal control problem is proven and a Keilson--Storer optimality system characterizing the solution of the proposed optimal control problem is obtained. The optimality system is used to construct a gradient--based optimization strategy in the framework of Monte--Carlo methods. This task requires to accommodate the resulting adjoint Keilson--Storer model in a form that is consistent with the kinetic formulation. For this reason, we derive an adjoint Keilson--Storer collision kernel and an additional source term. A similar approach is presented in the case of a linear space--inhomogeneous kinetic model with external forces and with Keilson--Storer collision term. In this framework, a control mechanism in the form of an external space--dependent force is investigated. The purpose of this control is to steer the multi--particle system to follow a desired mean velocity and position and to reach a desired final configuration in phase space. An optimal control problem using the formulation of ensemble controls is stated with an objective that is constituted of expected values in phase space and \$H^1\$ costs of the control. For solving the optimal control problems, a gradient--based computational strategy in the framework of Monte Carlo methods is developed. Part of this is the denoising of the distribution functions calculated by Monte Carlo algorithms using methods of the realm of partial differential equations. A standalone C++ code is presented that implements the developed non--linear conjugated gradient strategy. Results of numerical experiments confirm the ability of the designed probabilistic control framework to operate as desired. An outlook section about optimal control problems governed by non--linear space--inhomogeneous kinetic models completes this thesis.}, subject = {Optimale Kontrolle}, language = {en} }