@article{SpringKrohneFrankeetal.1976, author = {Spring, Herbert and Krohne, Georg and Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F.}, title = {Homogeneity and heterogeneity of sizes of transcriptional units and spacer regions in nucleolar genes of Acetabularia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41398}, year = {1976}, abstract = {The arrangement of genes of precursor molecules for ribosomal RNA (pre-rRNA) in primary nuclei from two green algae species, Acetabularia mediterranea and A. major, has been analyzed in an electron microscope study. The pattern of transcriptional units in individual strands of nucleolar chromatin was investigated using spread and positively stained preparations. The rDNA pattern is not uniform but differs in different strands. The predominant type of nucleolar chromatin exhibits a high degree of homogeneity in the sequence of matrix units (intercepts covered with fibrilst hat contain the pre-rRNA) and fibril-free spacer intercepts. Substantial differences, however, are observed between the patterns in different strands. In addition, there is evidence in some strands for intraaxial heterogeneity of both spacer and matrix units. The following major types can be distinguished: type la, ca. 2 micrometer long matrix units, extremely short spacer intercepts in A. mediterranea (ca. 1 micrometer long ones in A. major), completely homogeneous distribution; type Ib, as type la but with intercalated, isolated, significantly shorter and/or longer matrix units; type lIa, matrix unit sizes as in type la, but much longer spacer intercepts, high degree of homogeneity; type Ill, largely heterogeneous arrangements of matrix and spacer units of varying sizes. The matrix unit data are compared with the sizes of pre-rRNA as determined by polyacrylamide gelelectrophoresis under denaturing and non-denaturing conditions. The findings are discussed in relation to recent observations in amphibia and insects and with respect to current concepts of the species-specificity of rDNA arrangements.}, language = {en} } @article{ScheerFrankeTrendelenburgetal.1976, author = {Scheer, Ulrich and Franke, Werner W. and Trendelenburg, Michael F. and Spring, Herbert}, title = {Classification of loops of lampbrush chromosomes according to the arrangement of transcriptional complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32822}, year = {1976}, abstract = {The arrangement of transcriptional units in the loops of lampbrush chromosomes from oocyte nuclei of urodele amphibia and from primary nuclei of the green alga Acetabularia have been studied in the electron microscope using spread preparations. Loops with different patterns of arrangement of matrix units (i.e. to a first approximation, transcriptional units) can be distinguished: (i) loops consisting of one active transcriptional unit; (ii) loops containing one active transcriptional unit plus additional fibril-free, i.e. apparently untranscribed, intercepts that may include 'spacer' regions; (iii) loops containing two or more transcriptional units arranged in identical or changing polarities, with or without interspersed apparent spacer regions. Morphological details of the transcriptional complexes are described. The observations are not compatible with the concept that one loop reflects one and only one transcriptional unit but, rather, lead to a classification of loop types according to the arrangement of their transcriptional units. We propose that the lampbrush chromosome loop can represent a unit for the coordinate transcription of either one gene or a set of several (different) genes.}, language = {en} } @article{ScheerTrendelenburgFranke1976, author = {Scheer, Ulrich and Trendelenburg, Michael F. and Franke, Werner W.}, title = {Regulation of transcription of genes of ribosomal RNA during amphibian oogenesis: a biochemical and morphological study}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32814}, year = {1976}, abstract = {Natural changes in the transcription of rRNA genes were studied in nucleoli from three oogenic stages of the newt Triturus alpestris with electron microscope, autoradiographic, and biochemical techniques. From determinations of the uridine triphosphate pool sizes and [3H]uridine uptake, phosphorylation, and incorporation into 28S and 18S rRNAs in vivo it was estimated that the rate of rRNA synthesis was about 0.01\% in previtellogenic oocytes and 13\% in mature oocytes when compared to midvitellogenesis. Spread preparations of nucleoli showed significant morphological changes in the transcriptional complexes. The total number of lateral fibrils, i.e., ribonucleoproteins containing the nascent rRNA precursor, were drastically decreased in stages of reduced synthetic activity. This indicates that rRNA synthesis is regulated primarily at the level of transcription. The resulting patterns of fibril coverage of the nucleolar chromatin axes revealed a marked heterogeneity. On the same nucleolar axis occurred matrix units that were completely devoid of lateral fibrils, matrix units that were almost fully covered with lateral fibrils, and various forms of matrix units with a range of lateral fibril densities intermediate between the two extremes. Granular particles that were tentatively identified as RNA polymerase molecules were not restricted to the transcription l complexes. They were observed, although less regularly and separated by greater distances, in untranscribed spacer regions as well as in untranscribed gene intercepts. The results show that the pattern of transcriptional control of rRNA genes differs widely in different genes, even in the same genetic unit.}, language = {en} } @article{ScheerKartenbeckTrendelenburgetal.1976, author = {Scheer, Ulrich and Kartenbeck, J{\"u}rgen and Trendelenburg, Michael F. and Stadler, Joachim and Franke, Werner W.}, title = {Experimental disintegration of the nuclear envelope: evidence for pore-connecting fibrils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39735}, year = {1976}, abstract = {The disintegration of the nuclear envelope has been examined in nuclei and nuclear envelopes isolated from amphibian oocytes and rat liver tissue, using different electron microscope techniques (ultrathin sections and negatively or positively stained spread preparations). Various treatments were studied, including disruption by surface tension forces, very low salt concentrations, and non ionic detergents such as Triton X-lOO and Nonidet P-40. The high local stability of the cylinders of nonmembranous pore complex material is emphasized. As progressive disintegration occurred in the membrane regions, a network of fibrils became apparent which interconnects the pore complexes and is distinguished from the pore complexassociated intranuclear fibrils. This network might correspond to an indistinct lamella, about 15 - 20 nm thick, located at the level of the inner nuclear membrane, which is recognized in thin sections to bridge the interpore distances. With all disintegration treatments a somewhat higher susceptibility of the outer nuclear membrane is notable, but a selective removal does not take place. Final stages of disintegration are generally characterized by the absence of identifiable, membrane- like structures. Analysis of detergent-treated nuclei and nuclear membrane fractions shows almost complete absence of lipid components but retention of significant amount of glycoproteins with a typical endomembrane-type carbohydrate pattern. Various alternative interpretations of these observations are discussed. From the present observations and those of Aaronson and Blobel (1,2), we favor the notion that threadlike intrinsic membrane components are stabilized by their attachment to the pore complexes, and perhaps also to peripheral nuclear structures, and constitute a detergent-resistant, interpore skeleton meshwork.}, language = {en} } @article{FrankeScheerSpringetal.1976, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Krohne, G.}, title = {Morphology of transcriptional units of rDNA: evidence for transcription in apparent spacer intercepts and cleavages in the elongating nascent RNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39681}, year = {1976}, abstract = {Several types of "irregular" structures in the arrangement of lateral fibrils were noted in electron microscopic preparations of transcriptionally active nucleolar chromatin from various plant and animal cells. Such forms include: I. Disproportionately long lateral fibrils which occur either as individual fibrils or in groups; 2. "Prelude complexes" and other arrangements of lateral fibrils in apparent spacer intercepts; 3. Thickening of the rDNA chromatin axis at the starting end of pre-rRNA matrix units; 4. Extremely long matrix units , the length of which exceeds that of the rDNA (double-strand) sequence complementary to the specific pre-rRN A (for abbreviations see text). In addition, the stability of high molecular weight RNAs contained in the nucleolar ribonucleoproteins during the preparation for electron microscopy was demonstrated by gel electrophoresis. The observations indicate that the morphological starting point of a pre-rRNA matrix unit is not necessarily identical with the initiation site for synthesis of pre-rRNA, but they rather suggest that the start of the transcriptional unit is located at least O.2-D.8 JLm before the matrix unit and that parts of the "apparent spacer" are transcribed. It is proposed that the pre-rRN A molecules do not represent the primary product of rDNA transcription but rather relatively stable intermediate products that have already been processed during transcription.}, language = {en} } @inproceedings{ScheerTrendelenburgFranke1976, author = {Scheer, Ulrich and Trendelenburg, M. F. and Franke, Werner W.}, title = {Regulation of transcription of ribosomal RNA genes during amphibian oogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33700}, year = {1976}, abstract = {No abstract available}, language = {en} } @article{TrendelenburgScheerZentgrafetal.1976, author = {Trendelenburg, Michael F. and Scheer, Ulrich and Zentgraf, Hanswalter and Franke, Werner W.}, title = {Heterogeneity of spacer lengths in circles of amplified ribosomal DNA of two insect species, Dytiscus marginalis and Acheta domesticus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33055}, year = {1976}, abstract = {No abstract available}, language = {en} } @article{FrankeScheerTrendelenburgetal.1976, author = {Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F. and Spring, Herbert and Zentgraf, Hanswalter}, title = {Absence of nucleosomes in transcriptionally active chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40646}, year = {1976}, abstract = {The ultrastructure of twO kinds of transcription ally active chromatin, the lampbrush chromosome loops and the nucleoli from amphibian oocytes and primary nuclei of the green alga Acetabularia, has been examined after manual isolation and dispersion in low salt media of slightly alkaline pH using various electron microscopic staining techniques (positive staining, metal shadowing, negative staining, preparation on positively charged films, etc.) and compared with the appearance of chromatin from various somatic cells (hen erythrocytes, rat hepatocytes, ClIltured murine sarcoma cells) prepared in parallel. While typical nucleosomes were revealed with all the techniques for chromatin from the latter three cell system, no nucleosomes were identified in either the lampbrush chromosome structures or the nucleolar chromatin. Nucleosomal arrays were absent not only in maximally fibril-covered matrix units but also in fibril-free regions between transcriptional complexes, including the apparent spacer intercepts between different transcriptional units. Moreover, comparisons of the length of the repeating units of rDNA in the transcribed state with those determined in the isolated rDNA and with the lengths of the first stable product of rDNA transcription, the pre-rRNA, demonstrated that the transcribed rDNA was not significantly shortened and/or condensed but rather extended in the transcriptional units. Distinct granules of about nucleosomal size which were sometimes found in apparent spacer regions as well as within matrix units of reduced fibril density were shown not to represent nucleosomes since their number per spacer unit was not inversely correlated with the length of the specific unit and also on the basis of their resistance to treatment with the detergent Sarkosyl NL-30. It is possible to structurally distinguish between transcriptionally active chromatin in which the DNA is extended in a non-nucleosomal form of chromatin and condensed, inactive chromatin within the typical nucleosomal package. The characteristic extended structure of transcriptionally active chromatin is found not only in the transcribed genes but also in non-transcribed regions within or between ("spacer") transcriptional units as well as in transcriptional units that are untranscribed amidst transcribed ones and/or have been inactivated for relatively short time. It is hypothesized that activation of transcription involves a transition from a nucleosomal to an extended chromatin organisation and that this structural transition is not specific for single "activated" genes but may involve larger chromatin regions, including adjacent untranscribed intercepts.}, subject = {Cytologie}, language = {en} } @inproceedings{ScheerFranke1976, author = {Scheer, Ulrich and Franke, Werner W.}, title = {Transcriptional complexes of nucleolar genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41072}, year = {1976}, abstract = {No abstract available}, language = {en} }