@phdthesis{Mischnik2013, author = {Mischnik, Marcel}, title = {Systembiologische Analyse der ADP- und Prostaglandin-vermittelten Signaltransduktion humaner Thrombozyten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78807}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Thrombozyten (Blutpl{\"a}ttchen) sind die Vermittler der zellul{\"a}ren H{\"a}mostase. Ihre F{\"a}higkeit zu Aggregieren und sich an das umgebende Gewebe verletzter Blutgef{\"a}sse anzulagern, wird durch ein komplexes intrazellul{\"a}res Signaltransduktionsnetzwerk bestimmt, das sowohl aktivierende, als auch inhibierende Subnetzwerke beinhaltet. Das Verst{\"a}ndnis dieser Prozesse ist von hoher medizinischer Bedeutung. Im Rahmen dieser Arbeit wurde die thrombozyt{\"a}re Signaltransduktion sowohl mittels eines Boole'schen, als auch verschiedener dynamischer Modelle analysiert. Die Boole'sche Modellierung f{\"u}hrte zu interessanten Erkenntnissen {\"u}ber das Zusammenwirken einzelner Subnetzwerke bei der Vermittlung irreversibler Pl{\"a}ttchenaktivierung und zeigte Mechanismen der Interaktion mit dem hemmenden Prostaglandinsystem auf. Das Modell beinhaltet unter Anderem wichtige Systemkomponenten wie Calciumsignalgebung, Aktivierung von Schl{\"u}sselkinasen wie Src und PKC, Integrin-vermitteltes outside-in sowie inside-out Signalgebung und autokrine ADP- und Thromboxan-Produktion. Unter Verwendung dieses Boole'schen Ansatzes wurde weiterhin das System-eigene Schwellenwertverhalten analysiert. Dabei stellte sich eine umgekehrt proportionale Abh{\"a}ngigkeit des relativen aktivierenden Reizes, der notwendig ist um den Schwellenwert zu {\"u}berschreiten, vom absoluten hemmenden Input heraus. Das System adaptiert demnach an h{\"o}here Prostaglandinkonzentrationen durch eine Erh{\"o}hung der Sensitivit{\"a}t f{\"u}r Aktivatoren wie dem van-Willebrandt-Faktor und Kollagen, und erm{\"o}glicht somit auch unter lokal hemmenden Bedingungen eine Pl{\"a}ttchen-vermittelte H{\"a}mostase. Der n{\"a}chste Schritt bestand in der Implementierung eines Differentialgleichungs-basierten Modells der thrombozyt{\"a}ren Prostaglandin-Signaltransduktion, um einen detaillierten {\"U}berblick {\"u}ber die Dynamik des inhibierenden Netzwerkteils zu erhalten. Die kinetischen Parameter dieses Modells wurden teilweise der Literatur entnommen. Der andere Teil wurde anhand einer umfassenden Kombination dosis- und zeitabh{\"a}ngiger cAMP und phospho-VASP Messdaten gesch{\"a}tzt. Der Prozess beinhaltete mehrere Iterationen aus Modellvorhersagen einerseits und experimentellem Design andererseits. Das Modell liefert die quantitativen Effekte der Prostaglandinrezeptoren IP, DP1, EP3 und EP4 und des ADP-Rezeptors P2Y12 auf die zugrunde liegende Signalkaskade. EP4 zeigt den st{\"a}rksten Effekt in der aktivierenden Fraktion, wohingegen EP3 einen st{\"a}rkeren inhibitorischen Effekt aus{\"u}bt, als der durch Clopidogrel hemmbare ADP-Rezeptor P2Y12. Weiterhin wurden die Eigenschaften des negativen feedback-loops der PKA auf den cAMP-Spiegel untersucht, und eine direkte Beeinflussung der Adenylatzyklase durch die PKA festgestellt, in Form einer Reduzierung der maximalen katalytischen Geschwindigkeit. Die Identifizierbarkeit der gesch{\"a}tzten Parameter wurde mittels profile-Likelihood-Sch{\"a}tzung untersucht. In einem dritten Schritt wurde ein sowohl die aktivierenden, als auch die hemmenden Netzwerkteile umfassendes dynamisches Modell implementiert. Die Topologie dieses Modells wurde in Anlehnung an die des Boole'schen Modells auf der Basis von a priori Wissen festgelegt. Die Modellparameter wurden anhand von Western-Blot, Calcium- und Aggregationsmessungen gesch{\"a}tzt. Auch hier wurde die Identifizierbarkeit der Modellparameter durch profile-likelihood-Sch{\"a}tzung {\"u}berpr{\"u}ft. Die bei niedrigen Ligandenkonzentrationen auftretende Reversibilit{\"a}t der Pl{\"a}ttchen-Aggregation konnte mittels dieses Modells reproduziert werden. Jedoch zeigte sich bei mittleren ADP-Konzentrationen ein Fließgleichgewicht in einem teilweise aktivierten Zustand, und damit kein bistabiles Schwellenwertverhalten. Inwiefern dieses Verhalten durch einen Umgebungs-basierteren Mechanismus des Alles-Oder-Nichts-Verhaltens begr{\"u}ndet wird, bei dem der {\"U}bergang von reversibler zu irreversibler Aggregation mehr durch parakrine Effekte des gesammten Thrombus bestimmt wird, als durch spezifische Signaltransduktionseigenschaften der einzelnen Zelle, m{\"u}ssen zuk{\"u}nftige Experimente zeigen. Insgesamt geben die erstellten Modelle interessante Einblicke in die Funktionsweise der Thrombozyten und erm{\"o}glichen die Simulation von pharmakologischen und genetischen Einfl{\"u}ssen, wie Rezeptormodulationen und knock-outs. Sie geben damit Implikationen zur Entstehung und Behandlung pathophysiologischer Zust{\"a}nde, und wertvolle Denkanst{\"o}ße f{\"u}r die weitere Forschung.}, subject = {Thrombozyt}, language = {de} } @phdthesis{Wangorsch2013, author = {Wangorsch, Gaby}, title = {Mathematical modeling of cellular signal transduction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87746}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A subtly regulated and controlled course of cellular processes is essential for the healthy functioning not only of single cells, but also of organs being constituted thereof. In return, this entails the proper functioning of the whole organism. This implies a complex intra- and inter-cellular communication and signal processing that require equally multi-faceted methods to describe and investigate the underlying processes. Within the scope of this thesis, mathematical modeling of cellular signaling finds its application in the analysis of cellular processes and signaling cascades in different organisms. ...}, subject = {Mathematische Modellierung}, language = {en} } @phdthesis{Schul2013, author = {Schul, Daniela}, title = {Spatio-temporal investigation and quantitative analysis of the BMP signaling pathway}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84224}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are key regulators for a lot of diverse cellular processes. During embryonic development these proteins act as morphogens and play a crucial role particularly in organogenesis. BMPs have a direct impact on distinct cellular fates by means of concentration-gradients in the developing embryos. Using the diverse signaling input information within the embryo due to the gradient, the cells transduce the varying extracellular information into distinct gene expression profiles and cell fate decisions. Furthermore, BMP proteins bear important functions in adult organisms like tissue homeostasis or regeneration. In contrast to TGF-ß signaling, currently only little is known about how cells decode and quantify incoming BMP signals. There is poor knowledge about the quantitative relationships between signal input, transducing molecules, their states and location, and finally their ability to incorporate graded systemic inputs and produce qualitative responses. A key requirement for efficient pathway modulation is the complete comprehension of this signaling network on a quantitative level as the BMP signaling pathway, just like many other signaling pathways, is a major target for medicative interference. I therefore at first studied the subcellular distribution of Smad1, which is the main signal transducing protein of the BMP signaling pathway, in a quantitative manner and in response to various types and levels of stimuli in murine c2c12 cells. Results indicate that the subcellular localization of Smad1 is not dependent on the initial BMP input. Surprisingly, only the phospho-Smad1 level is proportionally associated to ligand concentration. Furthermore, the activated transducer proteins were entirely located in the nucleus. Besides the subcellular localization of Smad1, I have analyzed the gene expression profile induced by BMP signaling. Therefore, I examined two endogenous immediate early BMP targets as well as the expression of the stably transgenic Gaussia Luciferase. Interestingly, the results of these independent experimental setups and read-outs suggest oscillating target gene expression. The amplitudes of the oscillations showed a precise concentration-dependence for continuous and transient stimulation. Additionally, even short-time stimulation of 15' activates oscillating gene-expression pulses that are detectable for at least 30h post-stimulation. Only treatment with a BMP type I receptor kinase inhibitor leads to the complete abolishment of the target gene expression. This indicated that target gene expression oscillations depend directly on BMP type I receptor kinase activity.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} }