@inproceedings{AndersSchartlBarnekow1984, author = {Anders, Fritz and Schartl, Manfred and Barnekow, Angelika}, title = {Xiphophorus as an in vivo model for studies on oncogenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86398}, year = {1984}, abstract = {The capacity of Xiphophorus to develop neoplasia can be formally assigned to a "tumor gene" (Tu), which appears to be a normal part of the genome of all individuals. The wild fish have evolved population-specific and cell type-specific systems of regulatory genes (R) for Tu that protect the fish from neoplasia. Hybridization of members of different wild populations in the laborstory followed by treatment of the hybrids with carcinogens led to disintegration of the R systems permitting excessive expression of Tu and thus resulting in neoplasia. Certain hybrids developed neoplasia even spontaneously. Observations on the genuine phenotypic effect of the derepressed Tu in the early embryo indicated an essential normal function of this oncogene in cell differentiation, proliferation and cell-cell communication. Tu appeared to be indispensable in the genome but may also be present in accessory copics. Recently, c-src, the cellular homolog of the Rous sarcoma virus oncogene v-src, was detected in Xiphophorus. The protein product of c-src, pp60c-src, was identified and then examined by its associated kinase activity. This pp60c-src was found in all individuals tested, but, depending on the genotype, its kinase activity was different. The genetic characters of c-src, such as linkage relations, dosage relations, expression, etc., correspond to those of Tu. From a systematic study which showed that pp60c-src was present in all metazoa tested ranging from mammals down to sponges, we concluded that c-src has evolved with the multicellular organization of animals. Neoplasia of animals and humans is a characteristic closely related to this evolution. Our data showed that small aquariurn fish, besides being used successfully because they are time-, space-, and money-saving systems for carcinogenicity testing, are also highly suitable for basic studies on neoplasia at the populational, morphological, developmental, cell biological, and molecular levels.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @inproceedings{Lutz1984, author = {Lutz, Werner K.}, title = {Structural characteristics of compounds that can be activated to chemically reactive metabolites: use for a prediction of a carcinogenic potential}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80105}, year = {1984}, abstract = {Many mutagens and carcinogens act via covalent interaction of metabolic intermediates with DNA in the target cell. This report groups those structural elements which are often found to form the basis for a metabolism to such chemically reactive metabolites. ~mpounds which are chemically reactive per se and which do not require metabolic activation form group 1. Group 2 compri~es of olefins and aromatic hydrocarbons where the oxidation via an epoxide can be responsible for the generation of reactive species. Aromatic amines, hydrazines, and nitrosamirres form group 3 requiring an oxidation of a nitrogen atom or of a carbon atom in alpha position to a nitrosated amine. Group 4 compounds are halogenated hydrocarbons which can either give rise to radicals or can form an ·olefin (group 2) upon dehydrohalogenation. Group 5 compounds depend upon some preceding enzymatic activity either not available in the target cell or acting on positions in the molecule which are not directly involved in the subsequent formation of electrophilic atoms. Examples for each group are taken from the "List of Chemieals and Irrdustrial Processes Associated with Cancer in Humans" as compiled by the International Agency for the Research on Cancer, and it is shown that 91\% of the organic carcinogens would have been detected on the basis of structural elements characteristic for group 1-5. As opposed to this very high sensitivity, the specificity ( the true negative fraction) of using this approach as a short-term test for carcinogenicity is shown to be bad because detoxification pathways have so far not been taken into account. These competing processes are so complex, however, that either only very extensive knowledge about pharmacokinetics, stability, and reactivity will be required or that in vivo systems have to be used to predict, on a quantitative basis, the darnage expected on the DNA. DNA-binding experiments in vivo are presented with benzene and toluene to demonstrate one possible way for an experimental assessment and it is shown that the detoxification reaction at the methyl group available only in toluene gives rise to a reduction by at least a factor of forty for the binding to rat liver DNA. This quantitative approach available with DNA-binding tests in vivo, also allows evaluation as to whether reactive metabolites and their DNA binding are always the most important single activities contributing to the overall carcinogenicity of a chemical. With the example of the livertumor inducing hexachlorocyclohexane isomers it is shown that situations will be found where reactive metabolites are formed and DNA binding in vivo is measurable but where this activity cannot be the decisive mode of carcinogenic action. It is concluded that the lack of structural elements known to become potentially reactive does not guarantee the lack of a carcinogenic potential.}, subject = {Toxikologie}, language = {en} } @inproceedings{Krueger1984, author = {Kr{\"u}ger, Hans-Peter}, title = {Was ist Sprechen? - objektive Registrierung des Sprechverhaltens im Alltag mit dem Logoport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41266}, year = {1984}, abstract = {No abstract available}, language = {de} } @inproceedings{Ellgring1984, author = {Ellgring, Heiner}, title = {Nonverbale Indikatoren des psychischen Befindens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42082}, year = {1984}, abstract = {No abstract available}, language = {de} } @inproceedings{ScheerRose1984, author = {Scheer, Ulrich and Rose, Kathleen M.}, title = {Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33223}, year = {1984}, abstract = {Rabbit antibodies to RNA polymerase I from a rat hepatoma have been used to localize the enzyme in a variety of cells at the light and electron microscopic level. In interphase cells the immunofluorescence pattern indicated that polymerase I is contained exclusively within the nucleolus. That this fluorescence, which appeared punctated rather than uniform, represented transcriptional complexes of RNA polymerase I and rRNA genes was suggested by the observation that it was enhanced in regenerating liver and in a hepatoma and was markedly diminished in cells treated with actinomycin D. Electron microscopic immunolocalization using gold-coupled second antibodies showed that transcribed rRNA genes are located in, and probably confined to, the fibrillar centers of the nucleolus. In contrast, the surrounding dense fibrillar component, previously thought to be the site of nascent prerRNA, did not contain detectable amounts of polymerase I. During mitosis, polymerase I molecules were detected by immunofluorescence microscopy at the chromosomal nucleolus organizer region, indicating that a considerable quantity of the enzyme remains bound to the rRNA genes. From this we conclude that rRNA genes loaded with polymerase I molecules are transmitted from one cell generation to the next one and that factors other than the polymerase itself are involved in the modulation of transcription of DNA containing rRNA genes during the cell cycle.}, language = {en} } @inproceedings{Ruhe1984, author = {Ruhe, Ernstpeter}, title = {La peur de la transgression: A propos du Livre d'Enanchet et du Bestiaire d'amours.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36841}, year = {1984}, abstract = {No abstract available}, language = {fr} } @inproceedings{Ruhe1984, author = {Ruhe, Ernstpeter}, title = {Inventio devenue troevemens: La recherche de la mati{\`e}re au moyen {\^a}ge.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36816}, year = {1984}, abstract = {No abstract available}, language = {de} } @inproceedings{Ruhe1984, author = {Ruhe, Ernstpeter}, title = {Der chevalier errant auf enzyklop{\"a}discher Fahrt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33722}, year = {1984}, abstract = {No abstract available}, language = {de} }