@article{GruenblattBartlIuhosetal.2015, author = {Gr{\"u}nblatt, Edna and Bartl, Jasmin and Iuhos, Diana-Iulia and Knezovic, Ana and Trkulja, Vladimir and Riederer, Peter and Walitza, Susanne and Salkovic-Petrisic, Melita}, title = {Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction}, series = {Journal of Molecular Psychiatry}, volume = {3}, journal = {Journal of Molecular Psychiatry}, number = {6}, doi = {10.1186/s40303-015-0012-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149593}, year = {2015}, abstract = {Background The spontaneously hypertensive rat (SHR) has been used to model changes in the central nervous system associated with cognitive-related disorders. Recent human and animal studies indicate a possible relationship between cognitive deficits, insulin resistance and hypertension. We aimed to investigate whether cognitively impaired SHRs develop central and/or peripheral insulin resistance and how their cognitive performance is influenced by the animal's sex and age as well as strains used for comparison (Wistar and Wistar-Kyoto/WKY). Methods Three and seven-month-old SHR, Wistar, and WKY rats were studied for their cognitive performance using Morris Water Maze (MWM) and Passive Avoidance tests (PAT). Plasma glucose and insulin were obtained after oral glucose tolerance tests. Cerebral cortex, hippocampus, and striatum status of insulin-receptor (IR) β-subunit and glycogen synthase kinase-3β (GSK3β) and their phosphorylated forms were obtained via ELISA. Results SHRs performed poorly in MWM and PAT in comparison to both control strains but more pronouncedly compared to WKY. Females performed poorer than males and 7-month-old SHRs had poorer MWM performance than 3-month-old ones. Although plasma glucose levels remained unchanged, plasma insulin levels were significantly increased in the glucose tolerance test in 7-month-old SHRs. SHRs demonstrated reduced expression and increased activity of IRβ-subunit in cerebral cortex, hippocampus, and striatum with different regional changes in phospho/total GSK3β ratio, as compared to WKYs. Conclusion Results indicate that cognitive deficits in SHRs are accompanied by both central and peripheral insulin dysfunction, thus allowing for the speculation that SHRs might additionally be considered as a model of insulin resistance-induced type of dementia.}, language = {en} } @article{BartlScholzHinterbergeretal.2011, author = {Bartl, Jasmin and Scholz, Claus-J{\"u}rgen and Hinterberger, Margareta and Jungwirth, Susanne and Wichart, Ildiko and Rainer, Michael K. and Kneitz, Susanne and Danielczyk, Walter and Tragl, Karl H. and Fischer, Peter and Riederer, Peter and Gr{\"u}nblatt, Edna}, title = {Disorder-specific effects of polymorphisms at opposing ends of the Insulin Degrading Enzymegene}, series = {BMC Medical Genetics}, volume = {12}, journal = {BMC Medical Genetics}, number = {151}, doi = {10.1186/1471-2350-12-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137744}, year = {2011}, abstract = {Background Insulin-degrading enzyme (IDE) is the ubiquitously expressed enzyme responsible for insulin and amyloid beta (Aβ) degradation. IDE gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with Type 2 diabetes mellitus (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for Alzheimer's disease (AD), however with controversial results. Methods We examined associations of three IDE polymorphisms (IDE2, rs4646953; IDE7, rs2251101 and IDE9, rs1887922) with AD, Aβ42 plasma level and T2DM risk in the longitudinal Vienna Transdanube Aging (VITA) study cohort. Results The upstream polymorphism IDE2 was found to influence AD risk and to trigger the Aβ42 plasma level, whereas the downstream polymorphism IDE7 modified the T2DM risk; no associations were found for the intronic variant IDE9. Conclusions Based on our SNP and haplotype results, we delineate the model that IDE promoter and 3' untranslated region/downstream variation may have different effects on IDE expression, presumably a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility.}, language = {en} } @phdthesis{Bartl2012, author = {Bartl, Jasmin}, title = {Impairment of insulin signaling pathway in Alzheimer's disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74197}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The neurodegenerative disorder Alzheimer's disease (AD) is the cause of approximately 60\% of the world's 35 million patients suffering from dementia. Current research focuses here are on association with other diseases such as diabetes type 2 (T2DM), possible genetic markers, specific signal transduction pathways within the brain and potential protein modification, because the pathogenesis and etiology of AD are still not fully understood. Specifically association of T2DM with AD came to the focus with the so-called "Rotterdam study" in 1999, indicating that T2DM doubles the risk of developing AD. In the meantime, it is known that the prevalence rate in patients with T2DM is 30\%. Drugs commonly used in the treatment of T2DM such as peroxisome proliferator-activated receptors gamma (PPARγ) agonists show improvement of the cognitive abilities in patients with early stage of dementia, with potential therapeutically relevance. Therefore it is important not only to investigate a link between these diseases, but also to investigate the insulin signaling pathway in the brain of AD patients. In order to investigate this complex issue in more details and demonstrate additional links between T2DM and AD, the present study used several basic biological methods to clarify the question: "Is impaired insulin signaling pathway within the brain crucial for the development of AD?" from several points of view. The methods used in this work have been i) an analysis of single nucleotide (SNP) polymorphism of the insulin-degrading enzyme gene (IDE) in relation to risk of AD and / or of T2DM, ii) post-mortem histochemical studies of brain tissue of patients with only AD, with AD combined with T2DM and with only T2DM compared with an age-matched control group, and iii.) investigations of neurochemical pathways and gene/protein expression changes of a human cell culture as a consequences of amyloid β (Aβ) treatment. After analysis of the IDE SNP polymorphism in the selected VITA (Vienna Trans Danube Aging) cohort disease-specific effects were discovered. The upstream polymorphism (IDE2) was found to influence AD risk in a protective manner, while the downstream polymorphism (IDE7) modified the T2DM risk. Based on the SNP results, the presented study delineate the model that IDE promoter and 3‟ untranslated region/downstream variation can have different effects on IDE expression, maybe a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. Furthermore, the human post-mortem studies could show that both AD as well as T2DM patients had a significantly lower density of the insulin receptor (IR) in the hippocampus, whereas a significantly increased density of inactive phosphorylated PPARγ has been found and this persisted even in patients with both diseases. Summarizing the histological study, it was possible to reveal common histological features of AD and T2DM, but no direct connection between the two diseases. Although AD is nowadays not only characterized by amyloid-containing plaque deposits and by the hyperphosphorylation of tau protein, the excessive Aβ42 presence in the brains of AD patients is still playing a key role. Up to date it is still not entirely clear which physical form of Aβ42 is responsible for the development of AD. The present work investigated, what impact has the state of aggregation of Aβ42 on genes and proteins of the insulin signaling pathway and the amyloid cascade. It could be shown that the oligomeric variant enhanced specifically the gene and protein expression of glycogen synthase kinase (GSK) 3β and also the enzyme activity was significantly increased, but has in turn strongly inhibited the IR gene and protein expression. Additionally, the effect of Aβ42 on monoamine oxidase B (MAO-B) was examined. An effect of both aggregated forms of Aβ42 had on enzyme activity was discovered. However, the fibrillar variants led to significantly increased activity of MAO-B while the oligomeric variants inhibited the enzyme activity. Several previous studies have demonstrated the involvement of increased MAO-B activity in AD, but the present work provides for the first time a direct link between the states of aggregation of Aβ42 to enzyme activity. Finally the results of the presented thesis can be summarized to following conclusion: Although AD and T2DM sharing some degrees of common features, still there is a lack of direct association, and therefore the diseases must be considered more independent rather than linked. But the impaired cerebral insulin signaling pathway seems to be another manifested hallmark of AD.}, subject = {Alzheimer-Krankheit}, language = {en} }