@article{HalderAbdelfatahJoetal.2017, author = {Halder, Luke D. and Abdelfatah, Mahmoud A. and Jo, Emeraldo A. H. and Jacobsen, Ilse D. and Westermann, Martin and Beyersdorf, Niklas and Lorkowski, Stefan and Zipfel, Peter F. and Skerka, Christine}, title = {Factor H binds to extracellular DNA traps released from human blood monocytes in response to Candida albicans}, series = {Frontiers in Immunology}, volume = {7}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2016.00671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181127}, year = {2017}, abstract = {Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14\(^{++}\)CD16\(^-\)/CD14\(^+\)CD16\(^+\)) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation.}, language = {en} } @article{EderHollmannMandasarietal.2022, author = {Eder, Sascha and Hollmann, Claudia and Mandasari, Putri and Wittmann, Pia and Schumacher, Fabian and Kleuser, Burkhard and Fink, Julian and Seibel, J{\"u}rgen and Schneider-Schaulies, J{\"u}rgen and Stigloher, Christian and Beyersdorf, Niklas and Dembski, Sofia}, title = {Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations}, series = {Journal of Functional Biomaterials}, volume = {13}, journal = {Journal of Functional Biomaterials}, number = {3}, issn = {2079-4983}, doi = {10.3390/jfb13030111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286130}, year = {2022}, abstract = {A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes.}, language = {en} } @article{WieseDennstaedtHollmannetal.2021, author = {Wiese, Teresa and Dennst{\"a}dt, Fabio and Hollmann, Claudia and Stonawski, Saskia and Wurst, Catherina and Fink, Julian and Gorte, Erika and Mandasari, Putri and Domschke, Katharina and Hommers, Leif and Vanhove, Bernard and Schumacher, Fabian and Kleuser, Burkard and Seibel, J{\"u}rgen and Rohr, Jan and Buttmann, Mathias and Menke, Andreas and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of acid sphingomyelinase increases regulatory T cells in humans}, series = {Brain Communications}, volume = {3}, journal = {Brain Communications}, number = {2}, doi = {10.1093/braincomms/fcab020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259868}, year = {2021}, abstract = {Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro.}, language = {en} } @article{MorbachBeyersdorfKerkauetal.2021, author = {Morbach, Caroline and Beyersdorf, Niklas and Kerkau, Thomas and Ramos, Gustavo and Sahiti, Floran and Albert, Judith and Jahns, Roland and Ertl, Georg and Angermann, Christiane E. and Frantz, Stefan and Hofmann, Ulrich and St{\"o}rk, Stefan}, title = {Adaptive anti-myocardial immune response following hospitalization for acute heart failure}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258907}, pages = {3348-3353}, year = {2021}, abstract = {Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49\%) female, and 24 (51\%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45\%) to F6 (n = 36, 77\%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88\%) compared with patients with reduced ejection fraction (n = 14, 61\%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95\% confidence interval 1.13-20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression.}, language = {en} } @article{AvotaBodemChithelenetal.2021, author = {Avota, Elita and Bodem, Jochen and Chithelen, Janice and Mandasari, Putri and Beyersdorf, Niklas and Schneider-Schaulies, J{\"u}rgen}, title = {The Manifold Roles of Sphingolipids in Viral Infections}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2021.715527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246975}, year = {2021}, abstract = {Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.}, language = {en} } @article{IckrathSpruegelBeyersdorfetal.2021, author = {Ickrath, Pascal and Spr{\"u}gel, Lisa and Beyersdorf, Niklas and Scherzad, Agmal and Hagen, Rudolf and Hackenberg, Stephan}, title = {Detection of Candida albicans-Specific CD4+ and CD8+ T Cells in the Blood and Nasal Mucosa of Patients with Chronic Rhinosinusitis}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {6}, issn = {2309-608X}, doi = {10.3390/jof7060403}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239671}, year = {2021}, abstract = {Candida albicans is ubiquitously present, and colonization in the nose and oral cavity is common. In healthy patients, it usually does not act as a pathogen, but in some cases can cause diseases. The influence of C. albicans as a trigger of T cell activation on the pathogenesis of chronic rhinosinusitis (CRS) is controversial, and its exact role is not clear to date. The aim of the present study was to detect and characterize C. albicans-specific CD4+ and CD8+ T cells in patients with CRS, with and without nasal polyps. Tissue and blood samples were collected from patients suffering from chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP), and from healthy controls. A peptide pool derived from C. albicans antigen was added to tissue and blood samples. After 6 days, lymphocytes were analyzed by multicolor flow cytometry. Activation was assessed by the intracellular marker Ki-67, and the cytokine secretion was measured. Tissue CD8+ T cells of CRSsNP patients showed a significantly higher proportion of Ki-67+ cells after activation with C. albicans antigen compared to peripheral blood CD8+ T cells. Cytokine secretion in response to C. albicans antigen was similar for all study groups. In this study, C. albicans-specific CD4+ and CD8+ T cells were detected in peripheral blood and mucosal tissue in all study groups. In patients suffering from CRSsNP, C. albicans-specific CD8+ T cells were relatively enriched in the nasal mucosa, suggesting that they might play a role in the pathogenesis of CRSsNP.}, language = {en} } @article{HaackBaikerSchlegeletal.2021, author = {Haack, Stephanie and Baiker, Sarah and Schlegel, Jan and Sauer, Markus and Sparwasser, Tim and Langenhorst, Daniela and Beyersdorf, Niklas}, title = {Superagonistic CD28 stimulation induces IFN-γ release from mouse T helper 1 cells in vitro and in vivo}, series = {European Journal of Immunology}, volume = {51}, journal = {European Journal of Immunology}, number = {3}, doi = {10.1002/eji.202048803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239028}, pages = {738 -- 741}, year = {2021}, abstract = {Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.}, language = {en} } @article{DasariKoleciShopovaetal.2019, author = {Dasari, Prasad and Koleci, Naile and Shopova, Iordana A. and Wartenberg, Dirk and Beyersdorf, Niklas and Dietrich, Stefanie and Sahag{\´u}n-Ruiz, Alfredo and Figge, Marc Thilo and Skerka, Christine and Brakhage, Axel A. and Zipfel, Peter F.}, title = {Enolase from Aspergillus fumigatus is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02573}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195612}, year = {2019}, abstract = {The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.}, language = {en} } @article{DasariShopovaStroeetal.2018, author = {Dasari, Prasad and Shopova, Iordana A. and Stroe, Maria and Wartenberg, Dirk and Martin-Dahse, Hans and Beyersdorf, Niklas and Hortschansky, Peter and Dietrich, Stefanie and Cseresny{\´e}s, Zolt{\´a}n and Figge, Marc Thilo and Westermann, Martin and Skerka, Christine and Brakhage, Axel A. and Zipfel, Peter F.}, title = {Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {1635}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.01635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197013}, year = {2018}, abstract = {The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28\% and FHL-1 with 42\% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57\%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20\%) and killed (44\%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.}, language = {en} } @article{HollmannWieseDennstaedtetal.2019, author = {Hollmann, Claudia and Wiese, Teresa and Dennst{\"a}dt, Fabio and Fink, Julian and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Translational approaches targeting ceramide generation from sphingomyelin in T cells to modulate immunity in humans}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2363}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198806}, year = {2019}, abstract = {In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection.}, language = {en} }