@phdthesis{Bruening2016, author = {Br{\"u}ning, Christoph}, title = {Quantendynamische Untersuchungen zur Exzitonenlokalisierung und linearen Spektroskopie in molekularen Oligomeren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139413}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Diese Arbeit befasst sich mit den spektralen Signaturen molekularer Aggregate sowie mit ihrer Wellenpakets- und Populationsdynamik in angeregten Zust{\"a}nden unter dem Einfluss externer St{\"o}rungen und photoinduzierter Asymmetrie. Hierzu werden quantendynamische numerische Berechnungen mit der Multi-Configuration Time-Dependent Hartree-Methode durchgef{\"u}hrt, um die angesprochenen Prozesse zu charakterisieren. Durch die Konzentration auf Modellrechnungen sind die qualitativen Ergebnisse dieser Arbeit auf viele Systeme {\"u}bertragbar. Zun{\"a}chst widmet sich die Arbeit den linearen UV/Vis-Absorptions- und Emissionsspektren von Aggregaten. Hier zeigt sich, dass die Anzahl der Gr{\"o}ßen, die ein Absorptionsspektrum bestimmen -- etwa die Anzahl der Chromophore, ihre geometrischen Anordnung und die elektronische Kopplung zwischen ihnen -- zu groß ist, um ihre numerischen Werte eindeutig aus den Spektren bestimmen zu k{\"o}nnen. Insbesondere k{\"o}nnen sich die Auswirkungen der Aggregatgr{\"o}ße und der Kopplungsst{\"a}rke gegenseitig so beeinflussen, dass die Form der Absorptionsbande bei sehr unterschiedlichen Systemen nahezu identisch ist. Daraus ergeben sich Schwierigkeiten bei der Interpretation experimenteller Spektren, insbesondere von selbst-aggregierten Oligomeren, deren Gr{\"o}ße unbekannt ist. Es ist daher notwendig, entweder die elektronische Kopplung oder die Anzahl der Monomere in einem Aggregat durch andere experimentelle Methoden unabh{\"a}ngig zu bestimmen. Ist die Aggregatgr{\"o}ße jedoch bekannt, k{\"o}nnen die Absorptionsspektren sehr wohl zur Bestimmung anderer Eigenschaften des Systems herangezogen werden. Dies wird durch die Untersuchung der Spektren kovalent gebundener zyklischer Aggregate aus drei und vier cis-Indolenin-Squarain-Molek{\"u}len als Beispiel f{\"u}r Systeme mit bekannter Gr{\"o}ße dargestellt. Das zweite Hauptthema der Arbeit ist die Populationsdynamik in angeregten Zust{\"a}nden molekularer Aggregate. Dazu werden numerische Rechnungen an Dimeren, Pentameren und Nonameren durchgef{\"u}hrt. Eine Asymmetrie, sei es im System selbst oder am Wellenpaket, das durch die Anregung entsteht, kann dazu f{\"u}hren, dass ein einzelnes Monomer dauerhaft bevorzugt populiert ist. Wenn durch eine externe St{\"o}rung die Energie des angeregten Zustands bestimmter Monomere f{\"u}r eine gewisse Zeit erh{\"o}ht ist, kommt es zu einer Lokalisation der Population in diesem energetisch h{\"o}heren Zustand. In einem System mit weiteren internen Freiheitsgraden wird die Population auf benachbarte Monomere {\"u}bertragen, wenn der Betrag der Energieverschiebung des gest{\"o}rten Zustands mit dem Abstand der Schwingungsniveaus zusammenf{\"a}llt. Der anf{\"a}ngliche Lokalisierungseffekt ist dar{\"u}ber hinaus zustandsspezifisch: Er wird durch die {\"U}berlappintegrale der Schwingungskomponenten der Wellenfunktion in den diabatischen angeregten elektronischen Zust{\"a}nden bestimmt. Durch die Kombination von zwei Laserpulsen kann auch ein Wellenpaket in den angeregten Zust{\"a}nden erzeugt werden, dessen Symmetrieachsen nicht mit denen der Potentialfl{\"a}chen des Systems zusammenfallen. Dadurch, dass hier die Asymmetrie schon im Wellenpaket vorliegt, kann es auch ohne {\"a}ußere St{\"o}rung zu einer Lokalisation der Population auf einem Monomer kommen.}, subject = {Kurzzeitphysik}, language = {de} } @article{BrueningWehnerHausneretal.2016, author = {Br{\"u}ning, Christoph and Wehner, Johannes and Hausner, Julian and Wenzel, Michael and Engel, Volker}, title = {Exciton dynamics in perturbed vibronic molecular aggregates}, series = {Structural Dynamics}, volume = {3}, journal = {Structural Dynamics}, doi = {10.1063/1.4936127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126085}, pages = {043201}, year = {2016}, abstract = {A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states.}, language = {en} }