@article{MukhopadhyaySchleierWirsingetal.2020, author = {Mukhopadhyay, Deb Pratim and Schleier, Domenik and Wirsing, Sara and Ramler, Jaqueline and Kaiser, Dustin and Reusch, Engelbert and Hemberger, Patrick and Preitschopf, Tobias and Krummenacher, Ivo and Engels, Bernd and Fischer, Ingo and Lichtenberg, Crispin}, title = {Methylbismuth: an organometallic bismuthinidene biradical}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, number = {29}, doi = {10.1039/D0SC02410D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251657}, pages = {7562-7568}, year = {2020}, abstract = {We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{-1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe\(_2\) bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.}, subject = {Photoelektronenspektroskopie}, language = {en} } @article{HirschPachnerFischeretal.2020, author = {Hirsch, Florian and Pachner, Kai and Fischer, Ingo and Issler, Kevin and Petersen, Jens and Mitric, Roland and Bakels, Sjors and Rijs, Anouk M.}, title = {Do Xylylenes Isomerize in Pyrolysis?}, series = {ChemPhysChem}, volume = {21}, journal = {ChemPhysChem}, number = {14}, doi = {10.1002/cphc.202000317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218316}, pages = {1515 -- 1518}, year = {2020}, abstract = {We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene  was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength  for all molecules were carried out and provde an explanation for the observation of the isomerization products.}, language = {en} }