@article{RossowVeitlVorlovaetal.2018, author = {Rossow, Leonie and Veitl, Simona and Vorlov{\´a}, Sandra and Wax, Jacqueline K. and Kuhn, Anja E. and Maltzahn, Verena and Upcin, Berin and Karl, Franziska and Hoffmann, Helene and G{\"a}tzner, Sabine and Kallius, Matthias and Nandigama, Rajender and Scheld, Daniela and Irmak, Ster and Herterich, Sabine and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Henke, Erik}, title = {LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0320-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227008}, pages = {4921-4940}, year = {2018}, abstract = {The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other.}, language = {en} } @article{WeigandRonchiVanselowetal.2021, author = {Weigand, Isabel and Ronchi, Cristina L. and Vanselow, Jens T. and Bathon, Kerstin and Lenz, Kerstin and Herterich, Sabine and Schlosser, Andreas and Kroiss, Matthias and Fassnacht, Martin and Calebiro, Davide and Sbiera, Silviu}, title = {PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {8}, doi = {10.1126/sciadv.abd4176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270445}, year = {2021}, abstract = {Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.}, language = {en} } @article{AltieriSbieraHerterichetal.2020, author = {Altieri, Barbara and Sbiera, Silviu and Herterich, Sabine and De Francia, Silvia and Della Casa, Silvia and Calabrese, Anna and Pontecorvi, Alfredo and Quinkler, Marcus and Kienitz, Tina and Mannelli, Massimo and Canu, Letizia and Angelousi, Anna and Chortis, Vasileios and Kroiss, Matthias and Terzolo, Massimo and Fassnacht, Martin and Ronchi, Cristina L.}, title = {Effects of Germline CYP2W1*6 and CYP2B6*6 Single Nucleotide Polymorphisms on Mitotane Treatment in Adrenocortical Carcinoma: A Multicenter ENSAT Study}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200565}, pages = {359}, year = {2020}, abstract = {Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2\% vs 51.7\%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55\% of patients with CYP2B6*6 vs. 28.2\% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6\%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.}, language = {en} } @article{SbieraTryfonidouWeigandetal.2016, author = {Sbiera, Silviu and Tryfonidou, Marianna A. and Weigand, Isabel and Grinwis, Guy C. M. and Broeckx, Bart and Herterich, Sabine and Allolio, Bruno and Deutschbein, Timo and Fassnacht, Martin and Meij, Bj{\"o}rn P.}, title = {Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas}, series = {Plos One}, volume = {11}, journal = {Plos One}, number = {12}, doi = {10.1371/journal.pone.0169009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148020}, pages = {e0169009}, year = {2016}, abstract = {Purpose Cushing's disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs. Methods Presence of USP8 mutations was analysed by Sanger and PCR-cloning sequencing in 38 canine ACTH-secreting adenomas. Furthermore, the role of USP8 and EGFR protein expression was assessed by immunohistochemistry in a subset of 25 adenomas. Results None of the analysed canine ACTH-secreting adenomas presented mutations in the USP8 gene. In a subset of these adenomas, however, we observed an increased nuclear expression of USP8, a phenotype characteristic for the USP8 mutated human tumours, that correlated with smaller tumour size but elevated ACTH production in those tumours. Conclusions Canine ACTH-secreting pituitary adenomas lack mutations in the USP8 gene suggesting a different genetic background of pituitary tumourigenesis in dogs. However, elevated nuclear USP8 protein expression in a subset of tumours was associated with a similar phenotype as in their human counterparts, indicating a possible end-point convergence of the different genetic backgrounds in the two species. In order to establish the dog as a useful animal model for the study of CD, further comprehensive studies are needed.}, language = {en} }