@article{AldejohannWiesePosseltGastmeieretal.2022, author = {Aldejohann, Alexander Maximilian and Wiese-Posselt, Miriam and Gastmeier, Petra and Kurzai, Oliver}, title = {Expert recommendations for prevention and management of Candida auris transmission}, series = {Mycoses}, volume = {65}, journal = {Mycoses}, number = {6}, doi = {10.1111/myc.13445}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318570}, pages = {590 -- 598}, year = {2022}, abstract = {Candida auris was first described as a yeast pathogen in 2009. Since then, the species has emerged worldwide. In contrast to most other Candida spp., C. auris frequently exhibits multi-drug resistance and is readily transmitted in hospital settings. While most detections so far are from colonised patients, C. auris does cause superficial and life-threatening invasive infections. During management of the first documented C. auris transmission in a German hospital, experts from the National Reference Centers for Invasive Fungal Infections (NRZMyk) and the National Reference Center for Surveillance of Nosocomial Infections screened available literature and integrated available knowledge on infection prevention and C. auris epidemiology and biology to enable optimal containment. Relevant recommendations developed during this process are summarised in this guidance document, intended to assist in management of C. auris transmission and potential outbreak situations. Rapid and effective measures to contain C. auris spread require a multi-disciplinary approach that includes clinical specialists of the affected unit, nursing staff, hospital hygiene, diagnostic microbiology, cleaning staff, hospital management and experts in diagnostic mycology / fungal infections. Action should be initiated in a step-wise process and relevant interventions differ between management of singular C. auris colonised / infected patients and detection of potential C. auris transmission or nosocomial outbreaks.}, language = {en} } @article{ReuschWagenhaeuserGabeletal.2022, author = {Reusch, Julia and Wagenh{\"a}user, Isabell and Gabel, Alexander and Eggestein, Annika and H{\"o}hn, Anna and L{\^a}m, Thi{\^e}n-Tr{\´i} and Frey, Anna and Schubert-Unkmeir, Alexandra and D{\"o}lken, Lars and Frantz, Stefan and Kurzai, Oliver and Vogel, Ulrich and Krone, Manuel and Petri, Nils}, title = {Influencing factors of anti-SARS-CoV-2-spike-IgG antibody titers in healthcare workers: A cross-section study}, series = {Journal of Medical Virology}, volume = {95}, journal = {Journal of Medical Virology}, number = {1}, doi = {10.1002/jmv.28300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318659}, year = {2022}, abstract = {Against the background of the current COVID-19 infection dynamics with its rapid spread of SARS-CoV-2 variants of concern (VOC), the immunity and the vaccine prevention of healthcare workers (HCWs) against SARS-CoV-2 continues to be of high importance. This observational cross-section study assesses factors influencing the level of anti-SARS-CoV-2-spike IgG after SARS-CoV-2 infection or vaccination. One thousand seven hundred and fifty HCWs were recruited meeting the following inclusion criteria: age ≥18 years, PCR-confirmed SARS-CoV-2 infection convalescence and/or at least one dose of COVID-19 vaccination. anti-SARS-CoV-2-spike IgG titers were determined by SERION ELISA agile SARS-CoV-2 IgG. Mean anti-SARS-CoV-2-spike IgG levels increased significantly by number of COVID-19 vaccinations (92.2 BAU/ml for single, 140.9 BAU/ml for twice and 1144.3 BAU/ml for threefold vaccination). Hybrid COVID-19 immunized respondents (after infection and vaccination) had significantly higher antibody titers compared with convalescent only HCWs. Anti-SARS-CoV-2-spike IgG titers declined significantly with time after the second vaccination. Smoking and high age were associated with lower titers. Both recovered and vaccinated HCWs presented a predominantly good humoral immune response. Smoking and higher age limited the humoral SARS-CoV-2 immunity, adding to the risk of severe infections within this already health impaired collective.}, language = {en} } @article{RohdeHimmelHofingeretal.2022, author = {Rohde, J{\"o}rn and Himmel, Wolfgang and Hofinger, Clemens and L{\^a}m, Thi{\^e}n-Tr{\´i} and Schrader, Hanna and Wallstabe, Julia and Kurzai, Oliver and G{\´a}gyor, Ildik{\´o}}, title = {Diagnostic accuracy and feasibility of a rapid SARS-CoV-2 antigen test in general practice - a prospective multicenter validation and implementation study}, series = {BMC Primary Care}, volume = {23}, journal = {BMC Primary Care}, number = {1}, doi = {10.1186/s12875-022-01756-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299659}, year = {2022}, abstract = {Background PCR testing is considered the gold standard for SARS-CoV-2 diagnosis but its results are earliest available hours to days after testing. Rapid antigen tests represent a diagnostic tool enabling testing at the point of care. Rapid antigen tests have mostly been validated by the manufacturer or in controlled laboratory settings only. External validation at the point of care, particularly in general practice where the test is frequently used, is needed. Furthermore, it is unclear how well point of care tests are accepted by the practice staff. Methods In this prospective multicenter validation study in primary care, general practitioners included adult individuals presenting with symptoms suggesting COVID-19. Each patient was tested by the general practitioner, first with a nasopharyngeal swab for the point of care test (Roche SARS-CoV-2 Rapid Antigen Test) and then with a second swab for PCR testing. Using the RT-PCR result as a reference, we calculated specificity, sensitivity, positive predictive value and negative predictive value, with their 95\% confidence intervals. General practitioners and medical assistants completed a survey to assess feasibility and usefulness of the point of care tests. Results In 40 practices in W{\"u}rzburg, Germany, 1518 patients were recruited between 12/2020 and 06/2021. The point of care test achieved a sensitivity of 78.3\% and a specificity of 99.5\% compared to RT-PCR. With a prevalence of 9.5\%, the positive predictive value was 93.9\% and the negative predictive value was 97.8\%. General practitioners rated the point of care test as a helpful tool to support diagnostics in patients with signs and symptoms suggestive for infection, particularly in situations where decision on further care is needed at short notice. Conclusion The point of care test used in this study showed a sensitivity below the manufacturer's specification (Sensitivity 96.25\%) in the practice but high values for specificity and high positive predictive value and negative predictive value. Although widely accepted in the practice, measures for further patient management require a sensitive interpretation of the point of care test results.}, language = {en} } @article{ZoranSeelbinderWhiteetal.2022, author = {Zoran, Tamara and Seelbinder, Bastian and White, Philip Lewis and Price, Jessica Sarah and Kraus, Sabrina and Kurzai, Oliver and Linde, Joerg and H{\"a}der, Antje and Loeffler, Claudia and Grigoleit, Goetz Ulrich and Einsele, Hermann and Panagiotou, Gianni and Loeffler, Juergen and Sch{\"a}uble, Sascha}, title = {Molecular profiling reveals characteristic and decisive signatures in patients after allogeneic stem cell transplantation suffering from invasive pulmonary aspergillosis}, series = {Journal of Fungi}, volume = {8}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof8020171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262105}, year = {2022}, abstract = {Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools.}, language = {en} } @article{TappeLauruschkatStrobeletal.2022, author = {Tappe, Beeke and Lauruschkat, Chris D. and Strobel, Lea and Pantale{\´o}n Garc{\´i}a, Jezreel and Kurzai, Oliver and Rebhan, Silke and Kraus, Sabrina and Pfeuffer-Jovic, Elena and Bussemer, Lydia and Possler, Lotte and Held, Matthias and H{\"u}nniger, Kerstin and Kniemeyer, Olaf and Sch{\"a}uble, Sascha and Brakhage, Axel A. and Panagiotou, Gianni and White, P. Lewis and Einsele, Hermann and L{\"o}ffler, J{\"u}rgen and Wurster, Sebastian}, title = {COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.954985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283558}, year = {2022}, abstract = {Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-γ, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients.}, language = {en} } @article{WaltherZimmermannTheuersbacheretal.2021, author = {Walther, Grit and Zimmermann, Anna and Theuersbacher, Johanna and Kaerger, Kerstin and Lilienfeld-Toal, Marie von and Roth, Mathias and Kampik, Daniel and Geerling, Gerd and Kurzai, Oliver}, title = {Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {7}, issn = {2309-608X}, doi = {10.3390/jof7070511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241810}, year = {2021}, abstract = {Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.}, language = {en} } @article{SattlerNosterBrunkeetal.2021, author = {Sattler, Janko and Noster, Janina and Brunke, Anne and Plum, Georg and Wiegel, Pia and Kurzai, Oliver and Meis, Jacques F. and Hamprecht, Axel}, title = {Comparison of two commercially available qPCR kits for the detection of Candida auris}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228879}, year = {2021}, abstract = {Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity.}, language = {en} } @article{SpringerHeldMengolietal.2021, author = {Springer, Jan and Held, J{\"u}rgen and Mengoli, Carlo and Schlegel, Paul Gerhardt and Gamon, Florian and Tr{\"a}ger, Johannes and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen and Eyrich, Matthias}, title = {Diagnostic performance of (1→3)-β-D-glucan alone and in combination with aspergillus PCR and galactomannan in serum of pediatric patients after allogeneic hematopoietic stem cell transplantation}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof7030238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234179}, year = {2021}, abstract = {Data on biomarker-assisted diagnosis of invasive aspergillosis (IA) in pediatric patients is scarce. Therefore, we conducted a cohort study over two years including 404 serum specimens of 26 pediatric patients after allogeneic hematopoietic stem cell transplantation (alloSCT). Sera were tested prospectively twice weekly for Aspergillus-specific DNA, galactomannan (GM), and retrospectively for (1→3)-β-D-glucan (BDG). Three probable IA and two possible invasive fungal disease (IFD) cases were identified using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSGERC) 2019 consensus definitions. Sensitivity and specificity for diagnosis of probable IA and possible IFD was 80\% (95\% confidential interval (CI): 28-99\%) and 55\% (95\% CI: 32-77\%) for BDG, 40\% (95\% CI: 5-85\%) and 100\% (95\% CI: 83-100\%) for GM, and 60\% (95\% CI: 15-95\%) and 95\% (95\% CI: 75-100\%) for Aspergillus-specific real-time PCR. However, sensitivities have to be interpreted with great caution due to the limited number of IA cases. Interestingly, the low specificity of BDG was largely caused by false-positive BDG results that clustered around the date of alloSCT. The following strategies were able to increase BDG specificity: two consecutive positive BDG tests for diagnosis (specificity 80\% (95\% CI: 56-94\%)); using an optimized cutoff value of 306 pg/mL (specificity 90\% (95\% CI: 68-99\%)) and testing BDG only after the acute posttransplant phase. In summary, BDG can help to diagnose IA in pediatric alloSCT recipients. However, due to the poor specificity either an increased cutoff value should be utilized or BDG results should be confirmed by an alternative Aspergillus assay.}, language = {en} } @article{MottolaRamirezZavalaHuenningeretal.2021, author = {Mottola, Austin and Ram{\´i}rez-Zavala, Bernardo and H{\"u}nninger, Kerstin and Kurzai, Oliver and Morschh{\"a}user, Joachim}, title = {The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {2}, doi = {10.1111/mmi.14727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259583}, pages = {483-497}, year = {2021}, abstract = {The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.}, language = {en} } @article{MachataSreekantapuramHuennigeretal.2021, author = {Machata, Silke and Sreekantapuram, Sravya and H{\"u}nniger, Kerstin and Kurzai, Oliver and Dunker, Christine and Schubert, Katja and Kr{\"u}ger, Wibke and Schulze-Richter, Bianca and Speth, Cornelia and Rambach, G{\"u}nter and Jacobsen, Ilse D.}, title = {Significant Differences in Host-Pathogen Interactions Between Murine and Human Whole Blood}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.565869}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222575}, year = {2021}, abstract = {Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.}, language = {en} }